Abstract

In this paper, we simplify the equipments for integral imaging (II) pickup and implement an active II system based on multiple structured light (MSL) method. In the active II system, the complete three-dimensional (3D) shape of the 3D scene can be reconstructed, and the tunable parallaxes can be generated without occlusions. Therefore, the high-quality 3D images can be displayed efficiently by the II. We also use the Compute Unified Device Architecture implementing the processing algorithms in graphics processing unit. The experimental results demonstrate the effectiveness of the MSL method for the II pickup and the acceleration for the elemental image array generation. Especially, the proposed method is suitable for the real scene with high precision.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonunified integral imaging elemental image array generation method based on selective pixel sampling algorithm

Zhao-Long Xiong, Shu-Li Li, Jun Chen, Huan Deng, and Qiong-Hua Wang
Appl. Opt. 54(9) 2532-2536 (2015)

Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system

Ki-Chul Kwon, Ji-Seong Jeong, Munkh-Uchral Erdenebat, Yan-Ling Piao, Kwan-Hee Yoo, and Nam Kim
Biomed. Opt. Express 6(3) 736-746 (2015)

Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array

Do-Hyeong Kim, Munkh-Uchral Erdenebat, Ki-Chul Kwon, Ji-Seong Jeong, Jae-Won Lee, Kyung-Ah Kim, Nam Kim, and Kwan-Hee Yoo
Appl. Opt. 52(34) 8411-8418 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).
  2. J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
    [Crossref]
  3. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  4. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  5. X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  6. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on Integral Photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref] [PubMed]
  7. H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
    [Crossref]
  8. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
    [Crossref] [PubMed]
  9. J. Yim, Y. M. Kim, and S. W. Min, “Real object pickup method for real and virtual modes of integral imaging,” Opt. Eng. 53(7), 073109 (2014).
    [Crossref]
  10. X. Jiao, X. Zhao, Y. Yang, Z. Fang, and X. Yuan, “Dual-camera enabled real-time three-dimensional integral imaging pick-up and display,” Opt. Express 20(25), 27304–27311 (2012).
    [Crossref] [PubMed]
  11. J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
    [Crossref]
  12. G. Li, K. C. Kwon, G. H. Shin, J. S. Jeong, K. H. Yoo, and N. Kim, “Simplified integral imaging pickup method for real objects using depth camera,” J. Opt. Soc. Korea 16(4), 381–385 (2012).
    [Crossref]
  13. The Stanford Multi-Camera Array, http://graphics.stanford.edu/projects/array/ .
  14. Kinect 3D sensor: http://www.microsoft.com/en-us/kinectforwindows/ .
  15. CUDA C programming guide, Ver. 5.0, NVIDIA, Santa Clara, CA, (2012).
  16. Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
    [Crossref]
  17. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23(18), 3105–3108 (1984).
    [Crossref] [PubMed]
  18. E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009).
    [Crossref] [PubMed]
  19. L. Su, X. Su, W. Li, and L. Xiang, “Application of modulation measurement profilometry to objects with surface holes,” Appl. Opt. 38(7), 1153–1158 (1999).
    [Crossref] [PubMed]
  20. Y. Xu, S. Jia, Q. Bao, H. Chen, and J. Yang, “Recovery of absolute height from wrapped phase maps for fringe projection profilometry,” Opt. Express 22(14), 16819–16828 (2014).
    [Crossref] [PubMed]
  21. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
    [Crossref] [PubMed]
  22. P. Ou, B. Li, Y. Wang, and S. Zhang, “Flexible real-time natural 2D color and 3D shape measurement,” Opt. Express 21(14), 16736–16741 (2013).
    [Crossref] [PubMed]
  23. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  24. K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems, E 90-D, 233–241 (2007).
  25. Z. L. Xiong, Q. H. Wang, S. L. Li, H. Deng, and C. C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
    [Crossref] [PubMed]
  26. K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
    [Crossref] [PubMed]
  27. C. C. Ji, C. G. Luo, H. Deng, D. H. Li, and Q. H. Wang, “Tilted elemental image array generation method for moiré-reduced displays in computer generated integral imaging,” Opt. Express 21(17), 19816–19824 (2013).
    [Crossref] [PubMed]

2014 (4)

J. Yim, Y. M. Kim, and S. W. Min, “Real object pickup method for real and virtual modes of integral imaging,” Opt. Eng. 53(7), 073109 (2014).
[Crossref]

J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
[Crossref]

Y. Xu, S. Jia, Q. Bao, H. Chen, and J. Yang, “Recovery of absolute height from wrapped phase maps for fringe projection profilometry,” Opt. Express 22(14), 16819–16828 (2014).
[Crossref] [PubMed]

Z. L. Xiong, Q. H. Wang, S. L. Li, H. Deng, and C. C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (4)

2011 (2)

2010 (3)

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
[Crossref] [PubMed]

J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
[Crossref]

2009 (1)

2007 (1)

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems, E 90-D, 233–241 (2007).

2004 (1)

1999 (1)

1997 (1)

1984 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).

Arai, J.

Bao, Q.

Chen, H.

Chen, N.

Cho, Y.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems, E 90-D, 233–241 (2007).

Choi, H. J.

Choi, J. H.

Choi, K. H.

J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
[Crossref]

Deng, H.

Dohi, T.

Dorado, A.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

Erdenebat, M. U.

J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
[Crossref]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

Fang, Z.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Ha, J. S.

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

Hahn, J.

Halioua, M.

Hao, Q.

Hassebrook, L. G.

Hata, N.

Hong, J.

Hoshino, H.

Iwahara, M.

Jang, Y. H.

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

Javidi, B.

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
[Crossref]

Jeong, J. S.

Ji, C. C.

Jia, S.

Jiao, X.

Jung, J. S.

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

Kim, E. H.

Kim, H.

Kim, N.

J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
[Crossref]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

G. Li, K. C. Kwon, G. H. Shin, J. S. Jeong, K. H. Yoo, and N. Kim, “Simplified integral imaging pickup method for real objects using depth camera,” J. Opt. Soc. Korea 16(4), 381–385 (2012).
[Crossref]

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

Kim, Y.

Kim, Y. M.

J. Yim, Y. M. Kim, and S. W. Min, “Real object pickup method for real and virtual modes of integral imaging,” Opt. Eng. 53(7), 073109 (2014).
[Crossref]

Kwon, K. C.

Lau, D. L.

Lee, B.

Li, B.

Li, D. H.

Li, G.

Li, S. L.

Li, W.

Liao, H.

Lim, Y. T.

Lippmann, G.

G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).

Liu, H. C.

Liu, K.

Llavador, A.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

Luo, C. G.

Martínez-Corral, M.

X. Xiao, B. Javidi, M. Martínez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

Min, S. W.

J. Yim, Y. M. Kim, and S. W. Min, “Real object pickup method for real and virtual modes of integral imaging,” Opt. Eng. 53(7), 073109 (2014).
[Crossref]

J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems, E 90-D, 233–241 (2007).

Navarro, H.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

Okano, F.

Ou, P.

Park, C.

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

Park, J. H.

Park, K. S.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems, E 90-D, 233–241 (2007).

Piao, Y.

J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
[Crossref]

Saavedra, G.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

Shin, G. H.

Son, J. Y.

J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
[Crossref]

Srinivasan, V.

Stern, A.

Su, L.

Su, X.

Wang, Q. H.

Wang, Y.

Xiang, L.

Xiao, X.

Xiong, Z. L.

Xu, Y.

Yang, J.

Yang, Y.

Yano, S.

J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
[Crossref]

Yim, J.

J. Yim, Y. M. Kim, and S. W. Min, “Real object pickup method for real and virtual modes of integral imaging,” Opt. Eng. 53(7), 073109 (2014).
[Crossref]

Yoo, K. H.

J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
[Crossref]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

G. Li, K. C. Kwon, G. H. Shin, J. S. Jeong, K. H. Yoo, and N. Kim, “Simplified integral imaging pickup method for real objects using depth camera,” J. Opt. Soc. Korea 16(4), 381–385 (2012).
[Crossref]

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

Yuan, X.

Yuyama, I.

Zhang, S.

Zhao, X.

Adv. Opt. Photonics (2)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Opt. (5)

Comptes-Rendus Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).

IEICE – Transactions on Information and Systems, E (1)

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems, E 90-D, 233–241 (2007).

J. Disp. Technol. (1)

J. Y. Son, B. Javidi, S. Yano, and K. H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6(10), 394–403 (2010).
[Crossref]

J. Korea Contents Assoc. (1)

Y. H. Jang, C. Park, J. S. Jung, J. H. Park, N. Kim, J. S. Ha, and K. H. Yoo, “Integral imaging pickup method of bio-medical data using GPU and Octree,” J. Korea Contents Assoc. 10(6), 1–9 (2010).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Eng. (2)

J. S. Jeong, K. C. Kwon, M. U. Erdenebat, Y. Piao, N. Kim, and K. H. Yoo, “Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera,” Opt. Eng. 53(1), 015103 (2014).
[Crossref]

J. Yim, Y. M. Kim, and S. W. Min, “Real object pickup method for real and virtual modes of integral imaging,” Opt. Eng. 53(7), 073109 (2014).
[Crossref]

Opt. Express (9)

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
[Crossref] [PubMed]

E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009).
[Crossref] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010).
[Crossref] [PubMed]

P. Ou, B. Li, Y. Wang, and S. Zhang, “Flexible real-time natural 2D color and 3D shape measurement,” Opt. Express 21(14), 16736–16741 (2013).
[Crossref] [PubMed]

C. C. Ji, C. G. Luo, H. Deng, D. H. Li, and Q. H. Wang, “Tilted elemental image array generation method for moiré-reduced displays in computer generated integral imaging,” Opt. Express 21(17), 19816–19824 (2013).
[Crossref] [PubMed]

Y. Xu, S. Jia, Q. Bao, H. Chen, and J. Yang, “Recovery of absolute height from wrapped phase maps for fringe projection profilometry,” Opt. Express 22(14), 16819–16828 (2014).
[Crossref] [PubMed]

Z. L. Xiong, Q. H. Wang, S. L. Li, H. Deng, and C. C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
[Crossref] [PubMed]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

X. Jiao, X. Zhao, Y. Yang, Z. Fang, and X. Yuan, “Dual-camera enabled real-time three-dimensional integral imaging pick-up and display,” Opt. Express 20(25), 27304–27311 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406 (2012).
[Crossref]

Other (3)

The Stanford Multi-Camera Array, http://graphics.stanford.edu/projects/array/ .

Kinect 3D sensor: http://www.microsoft.com/en-us/kinectforwindows/ .

CUDA C programming guide, Ver. 5.0, NVIDIA, Santa Clara, CA, (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Configuration of the proposed active II system.
Fig. 2
Fig. 2 Principle of the 3D shape reconstruction by the proposed MSL method.
Fig. 3
Fig. 3 Geometry of generations for the sub-images and EIAs in the proposed system: (a) and (b) with the different CDPs.
Fig. 4
Fig. 4 Pixel mapping algorithm of the EIA generation.
Fig. 5
Fig. 5 GPU-based implementation of the sub-images and EIA generations based on the proposed method.
Fig. 6
Fig. 6 Experimental setup of the proposed active II system.
Fig. 7
Fig. 7 Captured deformed patterns and reconstructed 3D shapes in the experiment: (a) and (b) the deformed patterns projected by DLP1 and DLP2, (c) and (d) the 3D shapes reconstructed with (a) or (b), (e) the fused 3D shape by the proposed MSL method, and (f) the depth data with different pseudo-colors in the comparison experiment by the Microsoft Kinect system.
Fig. 8
Fig. 8 Generated sub-images with different projecting angles and EIAs with different CDPs: (a), (b), and (c) the sub-images, (d) and (e) the EIAs and magnified parts.
Fig. 9
Fig. 9 Different views of the reconstructed 3D images: (a) top view, (b) left view, (c) front view, (d) right view, and (e) bottom view.
Fig. 10
Fig. 10 Time costs of the generations of sub-images and EIA (a) the comparison of proposed method based on GPU and CPU with the same EIA’s resolution of 2048 × 1536 pixels, (b) the influences of the different EIA’s resolutions based on GPU.

Tables (1)

Tables Icon

Table 1 Configuration parameters and experiment environment of the II system

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I i ( x , y , j ) = R i ( x , y ) { A i ( x , y ) + B i ( x , y ) cos [ φ i ( x , y ) + σ j ] } .
φ ' i ( x , y ) = arc tan n = 1 N I i ( x , y , n ) sin ( σ n ) n = 1 N I i ( x , y , n ) cos ( σ n ) .
1 Δ h i ( x , y ) = a i ( x , y ) + b i ( x , y ) Δ φ i ( x , y ) + c i ( x , y ) Δ φ i 2 ( x , y ) ,
Δ H ( x , y ) = i = 1 M Δ h i ( x i , y i ) , ( x i , y i ) Ω i ,
i = 1 M Ω i = Ω ,
Δ D ( x , y ) = Δ H ( x , y ) W R w = Δ H ( x , y ) H R h ,
I θ ( x , y ) = T ( x + Δ q x , y + Δ q y ) ,
Δ q = ( Δ D ( x , y ) d c ) tan θ ,
θ = ( arc tan Δ r i g , arc tan Δ r j g ) ,
E ( x , y ) = ( p Δ r ) 2 i , j m , n I θ ( p m Δ r + i , p n Δ r + j ) δ ( x p m Δ r i , y p n Δ r j ) ,

Metrics