Abstract

We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping

M.F.C. Stephens, I.D. Phillips, P. Rosa, P. Harper, and N.J. Doran
Opt. Express 23(2) 902-911 (2015)

20 dB net-gain polarization-insensitive fiber optical parametric amplifier with >2 THz bandwidth

M. F. C. Stephens, V. Gordienko, and N. J. Doran
Opt. Express 25(9) 10597-10609 (2017)

In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier

M. F. C. Stephens, M. Tan, V. Gordienko, P. Harper, and N. J. Doran
Opt. Express 25(20) 24312-24325 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
    [Crossref] [PubMed]
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  3. M. F. C. Stephens, I. D. Phillips, P. Rosa, P. Harper, and N. J. Doran, “Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping,” Opt. Express 23(2), 902–911 (2015).
    [Crossref] [PubMed]
  4. X. Guo, X. Fu, and C. Shu, “Gain-saturated spectral characteristics in a Raman-assisted fiber optical parametric amplifier,” Opt. Lett. 39(12), 3658–3661 (2014).
    [Crossref] [PubMed]
  5. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
  6. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  7. T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
    [Crossref]
  8. M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
    [Crossref]
  9. J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
    [Crossref]
  10. A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
    [Crossref]
  11. X. Guo, X. Fu, and C. Shu, “Gain saturation in a Raman-assisted fiber optical parametric amplifier,” Opt. Lett. 38(21), 4405–4408 (2013).
    [Crossref] [PubMed]
  12. X. Guo and C. Shu, “Cross-gain modulation suppression in a Raman-assisted fiber optical parametric Amplifier,” IEEE Photonics Technol. Lett. 26(13), 1360–1363 (2014).
    [Crossref]
  13. M.-C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, “200-nm-Bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol. 19(7), 977–981 (2001).
    [Crossref]
  14. S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, M. Ali, and R. Dorsinville, “Optimization of gain bandwidth and gain ripple of a hybrid Raman/parametric amplifier for access network applications,” Appl. Opt. 51(32), 7834–7841 (2012).
    [Crossref] [PubMed]
  15. S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, “Optimization of Raman-assisted fiber optical parametric amplifier gain,” J. Lightwave Technol. 29(8), 1172–1181 (2011).
    [Crossref]
  16. N. Antoniades, G. Ellinas, and I. Roudas, WDM Systems and Networks.Modelling, Simulation, Design and Engineering (Springer, 2012).
    [Crossref]
  17. M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27(5), 583–589 (2009).
    [Crossref]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  19. M. Morshed, L. B. Du, and A. J. Lowery, “Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance,” J. Lightwave Technol. 31(1), 58–66 (2013).
    [Crossref]
  20. A. J. Lowery, S. Wang, and M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

X. Guo, X. Fu, and C. Shu, “Gain-saturated spectral characteristics in a Raman-assisted fiber optical parametric amplifier,” Opt. Lett. 39(12), 3658–3661 (2014).
[Crossref] [PubMed]

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

X. Guo and C. Shu, “Cross-gain modulation suppression in a Raman-assisted fiber optical parametric Amplifier,” IEEE Photonics Technol. Lett. 26(13), 1360–1363 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

2010 (2)

2009 (1)

2007 (1)

2006 (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

2005 (1)

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

2004 (1)

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

2001 (1)

Akasaka, Y.

Albuquerque, A.

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Ali, M.

Andrekson, P. A.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Antoniades, N.

Arend, M. F.

Boggio, J. M. C.

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

Callegari, F. A.

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

Doran, N. J.

Dorsinville, R.

Du, L. B.

Essiambre, R.-J.

Foschini, G. J.

Fragnito, H. L.

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

Fu, X.

Goebel, B.

Guimarães, A.

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

Guo, X.

Harper, P.

Ho, M.-C.

Kazovsky, L. G.

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

M.-C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, “200-nm-Bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol. 19(7), 977–981 (2001).
[Crossref]

Kramer, G.

Leng, L.

Lowery, A. J.

Madamopoulos, N.

Marconi, J. D.

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

Marhic, M.

Marhic, M. E.

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Mazroa, D.

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Morshed, M.

Olsson, B. E.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Peiris, S.

Phillips, I. D.

Premaratne, M.

Puttnam, B. J.

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Richardson, D. J.

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

Rosa, P.

Shinada, S.

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Shu, C.

Stephens, M. F. C.

Szabo, A.

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Tam, H. Y.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Uesaka, K.

Ummy, M. A.

Wada, N.

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

Wai, P. K. A.

Wang, S.

Wang, S. H.

Winzer, P. J.

Wong, K. Y. K.

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Xu, L.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Szabo, B. J. Puttnam, D. Mazroa, A. Albuquerque, S. Shinada, and N. Wada, “Numerical comparison of WDM interchannel crosstalk in FOPA and PPLN-based PSAs,” IEEE Photonics Technol. Lett. 26(15), 1503–1506 (2014).
[Crossref]

X. Guo and C. Shu, “Cross-gain modulation suppression in a Raman-assisted fiber optical parametric Amplifier,” IEEE Photonics Technol. Lett. 26(13), 1360–1363 (2014).
[Crossref]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fibre-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

J. Lightwave Technol. (5)

Opt. Commun. (1)

J. M. C. Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4-6), 451–472 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

Other (4)

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

N. Antoniades, G. Ellinas, and I. Roudas, WDM Systems and Networks.Modelling, Simulation, Design and Engineering (Springer, 2012).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scheme of simulation for Raman-Assisted FOPA.
Fig. 2
Fig. 2 Output spectra of the RA-FOPA and C-FOPA averaged over 10 runs and plotted with 12.5 GHz resolution bandwidth for −12 dBm per-signal input power and 20 dB average net-gain.
Fig. 3
Fig. 3 Signal gain and parametric pump power along the HNLF for a C-FOPA (PP = 29.5 dBm), RA-FOPA1 (PP = 27.5 dBm, RP = 28 dBm) and RA-FOPA2 (PP = 24.4 dBm, RP = 32 dBm). Per-signal input power is −10 dBm and average net-gain is 20 dB.
Fig. 4
Fig. 4 Signal gain and S-to-X ratio along the HNLF for a C-FOPA and RA-FOPA with different length of HNLF. Per-signal input power is −10 dBm and average net-gain is 20 dB.
Fig. 5
Fig. 5 S-to-X ratio along the HNLF for a C-FOPA and different configuration of RA-FOPA with different length of HNLF. Per-signal input power is −10 dBm and average net-gain is 20 dB.
Fig. 6
Fig. 6 Signal gain and S-to-X ratio along the HNLF for RA-FOPA with different average net-gain.
Fig. 7
Fig. 7 S-to-X ratio for a C-FOPA and RA-FOPA and different average net-gain. Per-signal input power is −10 dBm and HNLF length is 0.2 km.
Fig. 8
Fig. 8 S-to-X ratio along the HNLF for 20 dB average net-gain of 10x100GHz and 20x50GHz WDM-signals.

Tables (1)

Tables Icon

Table 1 Crosstalk reduction for different configuration of RA-FOPA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P S / z= α S P S + g S P R P S P R / z= α R P R g R P S P R ,
A S z = k=2 4 i k+1 β k k! k A S t k α S 2 A S + i γ S ( | A S | 2 +(2 f R ) P R ) A S + g S 2 P R A S ,
P Σ FWM ( f m )= f k f j f i P ijk FWM ( f m ) ,
d| A ijk FWM (z) | dz = D 3 γ ( P i (z) P j (z) P k (z) ) 1/2 ,
P ijk FWM (L)= D 2 9 γ 2 ( 0 L [ P WDM (z) ] 3/2 dz ) 2 .

Metrics