Abstract

A detailed study of the dynamics during thermal regeneration of fiber Bragg gratings, written in hydrogen-loaded standard single-mode fibers using a ns pulsed 213 nm UV laser, is reported. Isothermal pre-annealing performed in the range 85 °C to 1100 °C, with subsequent grating regeneration at 1100 °C, resulted in a maximum refractive index modulation, Δnm ~1.4⋅10−4, for gratings pre-annealed near 900 °C while a minimum value of Δnm ~2⋅10−5 was achieved irrespective of pre-annealing temperature. This optimum denote an inflection point between opposing thermally triggered processes, which we ascribe to the reaction-diffusion mechanism of molecular water and hydroxyl species in silica. The results shed new light on the mechanisms underlying thermal grating regeneration in optical fibers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers

Kai Lu, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Pan Zhang, Qin Tian, Xiangzi Ding, and Xueguang Qiao
Appl. Opt. 57(24) 6971-6975 (2018)

A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta
Opt. Express 19(2) 1198-1206 (2011)

Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre

Kevin Cook, Li-Yang Shao, and John Canning
Opt. Mater. Express 2(12) 1733-1742 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  3. E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 2011)
  4. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [Crossref]
  5. B. Poumellec, I. Riant, and C. Tessier-Lescourret, “Precise life-time prediction using demarcation energy approximation for distributed activation energy reaction,” J. Phys. Condens. Matter 18(7), 2199–2216 (2006).
    [Crossref]
  6. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
    [Crossref]
  7. L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett. 21(24), 2032–2034 (1996).
    [Crossref] [PubMed]
  8. I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
    [Crossref]
  9. L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
    [Crossref]
  10. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  11. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
    [Crossref]
  12. S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
    [Crossref] [PubMed]
  13. M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
    [Crossref]
  14. V. Grubsky, D. Starodubov, and W. W. Morey, “High-temperature Bragg gratings in germanosilicate fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2003), paper MB-1.
  15. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  16. H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
    [Crossref] [PubMed]
  17. K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
    [Crossref]
  18. A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics, (Optical Society of America, 2014), paper BW4D.3.
  19. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt. 50(17), 2519–2522 (2011).
    [Crossref] [PubMed]
  20. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.
  21. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
    [Crossref] [PubMed]
  22. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
    [Crossref]
  23. M. Fokine, B. E. Sahlgren, and R. Stubbe, “High temperature resistant Bragg gratings fabricated in silica optical fibres,” in Australian Conference on Optical Fiber Technology (OECC, 1996).
  24. M. Fokine, “Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers,” Opt. Lett. 27(22), 1974–1976 (2002).
    [Crossref] [PubMed]
  25. M. Fokine, “Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber,” Opt. Lett. 29(11), 1185–1187 (2004).
    [Crossref] [PubMed]
  26. J. Kirchof, S. Unger, H.-J. Pissler, and B. Knappe, “Hydrogen-induced hydroxyl profiles in doped silica layers,” in Optical Fiber Communication Conference (OSA, 1995), paper WP9.
    [Crossref]
  27. R. H. Doremus, “Diffusion of water in silica glass,” J. Mater. Res. 10(09), 2379–2389 (1995).
    [Crossref]
  28. J. Canning, S. Bandyopadhyay, M. Stevenson, and K. Cook, “Fibre Bragg grating sensor for high temperature application,” in Australian Conference on Optical Fibre Technology and Opto-Electronics Communications Conference (OECCC, 2008).
  29. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  30. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
    [Crossref]
  31. M. Fokine, “High temperature miniature oven with low thermal gradient for processing fiber Bragg gratings,” Rev. Sci. Instrum. 72(8), 3458–3461 (2001).
    [Crossref]
  32. M. L. F. Nascimento and E. D. Zanotto, “Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass,” Phys. Rev. B 73(2), 024209 (2006).
    [Crossref]
  33. H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
    [Crossref]
  34. H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
    [Crossref]
  35. B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  36. R. H. Doremus, Diffusion of Reactive Molecules in Solids and Melts (Wiley, 2002), pp. 96–107.
  37. M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
    [Crossref]
  38. H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
    [Crossref]
  39. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers,” in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.
    [Crossref]
  40. L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
    [Crossref]
  41. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
    [Crossref]
  42. K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185(3), 203–220 (1995).
    [Crossref]
  43. J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
    [Crossref]
  44. E. M. Birtch and J. E. Shelby, “Annealing of hydrogen-impregnated and irradiated vitreous silica,” J. Non-Cryst. Solids 349, 156–161 (2004).
    [Crossref]
  45. C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
    [Crossref]
  46. Z. Yongheng and G. Zhenan, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38), 4030–4033 (2006).
  47. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.
    [Crossref]
  48. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Bragg gratings written in Sn-Er-Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential,” J. Opt. Soc. Am. A 21(8), 1503–1511 (2004).
    [Crossref] [PubMed]
  49. G. Violakis and H. G. Limberger, “Annealing of UV Ar+ and ArF excimer laser fabricated Bragg gratings: SMF-28e fiber,” Opt. Mater. Express 4(3), 499–508 (2014).
    [Crossref]
  50. M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
    [Crossref]

2014 (4)

H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
[Crossref] [PubMed]

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

G. Violakis and H. G. Limberger, “Annealing of UV Ar+ and ArF excimer laser fabricated Bragg gratings: SMF-28e fiber,” Opt. Mater. Express 4(3), 499–508 (2014).
[Crossref]

2013 (1)

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

2012 (1)

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

2011 (2)

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt. 50(17), 2519–2522 (2011).
[Crossref] [PubMed]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

2010 (1)

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (2)

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
[Crossref]

2006 (3)

Z. Yongheng and G. Zhenan, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38), 4030–4033 (2006).

B. Poumellec, I. Riant, and C. Tessier-Lescourret, “Precise life-time prediction using demarcation energy approximation for distributed activation energy reaction,” J. Phys. Condens. Matter 18(7), 2199–2216 (2006).
[Crossref]

M. L. F. Nascimento and E. D. Zanotto, “Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass,” Phys. Rev. B 73(2), 024209 (2006).
[Crossref]

2005 (2)

2004 (5)

M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
[Crossref]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Bragg gratings written in Sn-Er-Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential,” J. Opt. Soc. Am. A 21(8), 1503–1511 (2004).
[Crossref] [PubMed]

J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
[Crossref]

E. M. Birtch and J. E. Shelby, “Annealing of hydrogen-impregnated and irradiated vitreous silica,” J. Non-Cryst. Solids 349, 156–161 (2004).
[Crossref]

M. Fokine, “Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber,” Opt. Lett. 29(11), 1185–1187 (2004).
[Crossref] [PubMed]

2002 (2)

2001 (1)

M. Fokine, “High temperature miniature oven with low thermal gradient for processing fiber Bragg gratings,” Rev. Sci. Instrum. 72(8), 3458–3461 (2001).
[Crossref]

2000 (1)

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

1999 (1)

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

1997 (1)

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

1996 (2)

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett. 21(24), 2032–2034 (1996).
[Crossref] [PubMed]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

1995 (3)

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185(3), 203–220 (1995).
[Crossref]

R. H. Doremus, “Diffusion of water in silica glass,” J. Mater. Res. 10(09), 2379–2389 (1995).
[Crossref]

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

1993 (1)

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

Ahmad, H.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Ali, N. M.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Archambault, J. L.

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

Bandyopadhyay, S.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

J. Canning, S. Bandyopadhyay, M. Stevenson, and K. Cook, “Fibre Bragg grating sensor for high temperature application,” in Australian Conference on Optical Fibre Technology and Opto-Electronics Communications Conference (OECCC, 2008).

Bartelt, H.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt. 50(17), 2519–2522 (2011).
[Crossref] [PubMed]

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[Crossref] [PubMed]

Baxter, G. W.

Becker, M.

Bernage, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Birtch, E. M.

E. M. Birtch and J. E. Shelby, “Annealing of hydrogen-impregnated and irradiated vitreous silica,” J. Non-Cryst. Solids 349, 156–161 (2004).
[Crossref]

Brückner, S.

Canning, J.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt. 50(17), 2519–2522 (2011).
[Crossref] [PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, S. Bandyopadhyay, M. Stevenson, and K. Cook, “Fibre Bragg grating sensor for high temperature application,” in Australian Conference on Optical Fibre Technology and Opto-Electronics Communications Conference (OECCC, 2008).

Chen, Q.

J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
[Crossref]

Cheong, Y. K.

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Chojetzki, C.

Chong, W. Y.

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Chong, W.-Y.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Collins, S. F.

Cook, K.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, S. Bandyopadhyay, M. Stevenson, and K. Cook, “Fibre Bragg grating sensor for high temperature application,” in Australian Conference on Optical Fibre Technology and Opto-Electronics Communications Conference (OECCC, 2008).

Cordier, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Dalle, C.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Das, S.

Davis, K. M.

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185(3), 203–220 (1995).
[Crossref]

Depecker, C.

M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
[Crossref]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Dong, L.

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett. 21(24), 2032–2034 (1996).
[Crossref] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

Doremus, R. H.

R. H. Doremus, “Diffusion of water in silica glass,” J. Mater. Res. 10(09), 2379–2389 (1995).
[Crossref]

Douay, M.

M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
[Crossref]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Dussardier, B.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Fokine, M.

M. Fokine, “Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber,” Opt. Lett. 29(11), 1185–1187 (2004).
[Crossref] [PubMed]

M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
[Crossref]

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
[Crossref]

M. Fokine, “Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers,” Opt. Lett. 27(22), 1974–1976 (2002).
[Crossref] [PubMed]

M. Fokine, “High temperature miniature oven with low thermal gradient for processing fiber Bragg gratings,” Rev. Sci. Instrum. 72(8), 3458–3461 (2001).
[Crossref]

M. Fokine, B. E. Sahlgren, and R. Stubbe, “High temperature resistant Bragg gratings fabricated in silica optical fibres,” in Australian Conference on Optical Fiber Technology (OECC, 1996).

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Gagné, M.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

Gallagher, M. D.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Gilbert, S. L.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Grattan, K. T. V.

Grobnic, D.

Haller, F.

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

Harun, S. W.

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Hong, J. W.

J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
[Crossref]

Islam, M. R.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Kashyap, R.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

Kitcher, D. J.

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Lancry, M.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
[Crossref]

le Garff, G.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Lidgard, A.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Lim, K. S.

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Lim, K.-S.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Lim, M.-J.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Limberger, H. G.

G. Violakis and H. G. Limberger, “Annealing of UV Ar+ and ArF excimer laser fabricated Bragg gratings: SMF-28e fiber,” Opt. Mater. Express 4(3), 499–508 (2014).
[Crossref]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Lindner, E.

Liu, W. F.

Mihailov, S.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Monnom, G.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Nascimento, M. L. F.

M. L. F. Nascimento and E. D. Zanotto, “Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass,” Phys. Rev. B 73(2), 024209 (2006).
[Crossref]

Nguyen, Q.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

Niay, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Pal, S.

Patrick, H.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Paul, M. C.

Payne, D. N.

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

Pedersen, J. E.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Polz, L.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

Poumellec, B.

M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
[Crossref]

B. Poumellec, I. Riant, and C. Tessier-Lescourret, “Precise life-time prediction using demarcation energy approximation for distributed activation energy reaction,” J. Phys. Condens. Matter 18(7), 2199–2216 (2006).
[Crossref]

Pua, C. H.

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Qiao, X. G.

Qiao, X.-G.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

Reekie, L.

L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett. 21(24), 2032–2034 (1996).
[Crossref] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

Riant, I.

B. Poumellec, I. Riant, and C. Tessier-Lescourret, “Precise life-time prediction using demarcation energy approximation for distributed activation energy reaction,” J. Phys. Condens. Matter 18(7), 2199–2216 (2006).
[Crossref]

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

Rothhardt, M.

Roths, J.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

Russell, P. S. J.

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

Ryu, S. R.

J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
[Crossref]

Sahlgren, B. E.

M. Fokine, B. E. Sahlgren, and R. Stubbe, “High temperature resistant Bragg gratings fabricated in silica optical fibres,” in Australian Conference on Optical Fiber Technology (OECC, 1996).

Salathé, R. P.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Shelby, J. E.

E. M. Birtch and J. E. Shelby, “Annealing of hydrogen-impregnated and irradiated vitreous silica,” J. Non-Cryst. Solids 349, 156–161 (2004).
[Crossref]

Smelser, C.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

Stevenson, M.

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

J. Canning, S. Bandyopadhyay, M. Stevenson, and K. Cook, “Fibre Bragg grating sensor for high temperature application,” in Australian Conference on Optical Fibre Technology and Opto-Electronics Communications Conference (OECCC, 2008).

Stubbe, R.

M. Fokine, B. E. Sahlgren, and R. Stubbe, “High temperature resistant Bragg gratings fabricated in silica optical fibres,” in Australian Conference on Optical Fiber Technology (OECC, 1996).

Sun, T.

Tessier-Lescourret, C.

B. Poumellec, I. Riant, and C. Tessier-Lescourret, “Precise life-time prediction using demarcation energy approximation for distributed activation energy reaction,” J. Phys. Condens. Matter 18(7), 2199–2216 (2006).
[Crossref]

Tomozawa, M.

J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
[Crossref]

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185(3), 203–220 (1995).
[Crossref]

Trpkovski, S.

Violakis, G.

Wade, S. A.

Yang, H.

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Yang, H. Z.

Yang, H.-Z.

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Yongheng, Z.

Z. Yongheng and G. Zhenan, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38), 4030–4033 (2006).

Zanotto, E. D.

M. L. F. Nascimento and E. D. Zanotto, “Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass,” Phys. Rev. B 73(2), 024209 (2006).
[Crossref]

Zhang, B.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Zhenan, G.

Z. Yongheng and G. Zhenan, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38), 4030–4033 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Electron. Lett. (1)

L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), 1577–1578 (1993).
[Crossref]

IEEE Sens. J. (3)

H.-Z. Yang, W.-Y. Chong, X.-G. Qiao, M.-J. Lim, K.-S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 and 1.55 µm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

H. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

J. Appl. Phys. (3)

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen‐loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

J. Lightwave Technol. (1)

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

J. Mater. Res. (1)

R. H. Doremus, “Diffusion of water in silica glass,” J. Mater. Res. 10(09), 2379–2389 (1995).
[Crossref]

J. Non-Cryst. Solids (7)

M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
[Crossref]

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185(3), 203–220 (1995).
[Crossref]

J. W. Hong, S. R. Ryu, M. Tomozawa, and Q. Chen, “Investigation of structural change caused by UV irradiation of hydrogen-loaded Ge-doped core fiber,” J. Non-Cryst. Solids 349, 148–155 (2004).
[Crossref]

E. M. Birtch and J. E. Shelby, “Annealing of hydrogen-impregnated and irradiated vitreous silica,” J. Non-Cryst. Solids 349, 156–161 (2004).
[Crossref]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260(1-2), 83–98 (1999).
[Crossref]

Z. Yongheng and G. Zhenan, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38), 4030–4033 (2006).

M. Lancry, C. Depecker, B. Poumellec, and M. Douay, “H-Bearing species migration during UV writing of Bragg gratings in germanosilicate optical fibers,” J. Non-Cryst. Solids 353(5-7), 451–455 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

B. Poumellec, I. Riant, and C. Tessier-Lescourret, “Precise life-time prediction using demarcation energy approximation for distributed activation energy reaction,” J. Phys. Condens. Matter 18(7), 2199–2216 (2006).
[Crossref]

Opt. Commun. (3)

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284(1), 183–185 (2011).
[Crossref]

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. L. F. Nascimento and E. D. Zanotto, “Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass,” Phys. Rev. B 73(2), 024209 (2006).
[Crossref]

Proc. SPIE (1)

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

M. Fokine, “High temperature miniature oven with low thermal gradient for processing fiber Bragg gratings,” Rev. Sci. Instrum. 72(8), 3458–3461 (2001).
[Crossref]

Sensors (Basel Switzerland) (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Other (12)

J. Canning, S. Bandyopadhyay, M. Stevenson, and K. Cook, “Fibre Bragg grating sensor for high temperature application,” in Australian Conference on Optical Fibre Technology and Opto-Electronics Communications Conference (OECCC, 2008).

R. H. Doremus, Diffusion of Reactive Molecules in Solids and Melts (Wiley, 2002), pp. 96–107.

J. Kirchof, S. Unger, H.-J. Pissler, and B. Knappe, “Hydrogen-induced hydroxyl profiles in doped silica layers,” in Optical Fiber Communication Conference (OSA, 1995), paper WP9.
[Crossref]

M. Fokine, B. E. Sahlgren, and R. Stubbe, “High temperature resistant Bragg gratings fabricated in silica optical fibres,” in Australian Conference on Optical Fiber Technology (OECC, 1996).

S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics, (Optical Society of America, 2014), paper BW4D.3.

V. Grubsky, D. Starodubov, and W. W. Morey, “High-temperature Bragg gratings in germanosilicate fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2003), paper MB-1.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 2011)

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Effect of molecular water on thermal stability of gratings in hydrogen-loaded optical fibers,” in Conference on Optical Fiber Communication (Optical Society of America, 1999), paper ThD2.
[Crossref]

S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Reflection spectra for one of the test grating used in this study showing before annealing, after 60 minutes annealing at 700 °C, and the final grating after regeneration at 1100 °C.
Fig. 2
Fig. 2 Summary of FBG decay dynamics during 30 min isothermal annealing (a) in the range 200 °C to 900 °C with the corresponding labels to the right, and (b) in the range 900 °C to 1100 °C.
Fig. 3
Fig. 3 Replotted data (a) from Fig. 2(b) in lin-log scale to highlight the single-exponential decay behavior of Δnm prior to regeneration, and (b) the changes in Bragg wavelength during annealing including the fitted curves (dotted line) using a single exponential.
Fig. 4
Fig. 4 Arrhenius plot with the time constants derived from the decay in refractive index modulation and changes of the Bragg wavelength during isothermal annealing, including the corresponding activation energies.
Fig. 5
Fig. 5 Normalized refractive index modulation (Δnm) and change in Bragg wavelength (ΔλB) as a function of temperature measured after 30 min isothermal annealing.
Fig. 6
Fig. 6 Regeneration dynamics for FBGs isothermally annealed in the temperature range (a) 200 °C to 900 °C showing an increase in refractive index, and (b) 900 °C to 1100 °C showing a decrease in refractive index, with increasing temperature indicated by the arrows.
Fig. 7
Fig. 7 Grating dynamics during annealing and regeneration plotted in sequence. Data is plotted with a change in sign of the refractive index modulation after full erasure of the initial grating. Regeneration was performed at 1100 °C.
Fig. 8
Fig. 8 Absolute values of the refractive index modulation as a function of pre-annealing temperature, corresponding to the peak value (ΔnP), stable (ΔnS) and unstable (ΔnU) components of the regenerated grating.
Fig. 9
Fig. 9 Evolution of (a) refractive index modulation and (b) Bragg wavelength during grating regeneration for different pre-annealing temperatures. Here the starting time t = 0 corresponds to complete erasure of the type I grating (Δnm = 0).
Fig. 10
Fig. 10 The changes in refractive index modulation as a function of change in Bragg wavelength during the regeneration process at 1100 °C. Labels indicate pre-annealing temperatures with the arrows indicating increasing time. Data has been shifted vertically for clarity.

Tables (1)

Tables Icon

Table 1 Experimental parameters for isothermal annealing.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n m ( t )=Δ n m (0)exp( 4 π 2 D Λ B t ),
R=tan h 2 ( π L G Δ n m λ B η ),
Δλ Δ λ 0 Δ n m Δ n m 0 ,
Δ n DC = Δ λ B λ B Δ n eff η ,
H 2 O+SiOSi2SiOH,

Metrics