Abstract

We develop a pattern recognition cytometric technique for label-free cell classification. Two dimensional (2D) light scattering patterns from single cells and cell aggregates are obtained with a static cytometer. Good performance of the cytometric setup is verified by comparing yeast cell experimental results with theoretical simulations. Adaptive boosting (AdaBoost) method (a machine learning algorithm) is adopted for the analysis of the 2D light scattering patterns. It is shown that aggregates of three yeast cells can be well differentiated from aggregates of four yeast cells by this pattern recognition cytometric technique. We demonstrate that the pattern recognition cytometry can perform label-free classification of normal cervical cells and HeLa cells with a high accuracy rate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Differentiation of normal and leukemic cells by 2D light scattering label-free static cytometry

Linyan Xie, Qiao Liu, Changshun Shao, and Xuantao Su
Opt. Express 24(19) 21700-21707 (2016)

Light-sheet-based 2D light scattering cytometry for label-free characterization of senescent cells

Meiai Lin, Xu Qiao, Qiao Liu, Changshun Shao, and Xuantao Su
Biomed. Opt. Express 7(12) 5170-5181 (2016)

Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells

Meiai Lin, Qiao Liu, Chao Liu, Xu Qiao, Changshun Shao, and Xuantao Su
Biomed. Opt. Express 9(4) 1692-1703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Shapiro, Practical Flow Cytometry (John Wiley & Sons, Inc., 2003).
  2. L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
    [PubMed]
  3. J. Bocsi and A. Tárnok, “Cytomics and regenerative medicine,” Cytometry A 75A(8), 707–708 (2009).
    [Crossref] [PubMed]
  4. A. Cossarizza and A. Radbruch, “Cytometry for immunology: the marriage continues,” Cytometry A 85(1), 13–14 (2014).
    [Crossref] [PubMed]
  5. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
    [Crossref] [PubMed]
  6. U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
    [Crossref] [PubMed]
  7. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
    [Crossref] [PubMed]
  8. G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
    [PubMed]
  9. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [Crossref] [PubMed]
  10. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
    [Crossref]
  11. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
    [Crossref] [PubMed]
  12. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
    [Crossref] [PubMed]
  13. X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
    [Crossref]
  14. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
    [Crossref] [PubMed]
  15. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
    [Crossref] [PubMed]
  16. X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
    [Crossref] [PubMed]
  17. Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).
    [Crossref] [PubMed]
  18. Y. Zeng, B. Yan, Q. Sun, S. He, J. Jiang, Z. Wen, and J. Y. Qu, “In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence,” Biomed. Opt. Express 5(3), 653–663 (2014).
    [Crossref] [PubMed]
  19. S. Yu, J. Zhang, M. S. Moran, J. Q. Lu, Y. Feng, and X.-H. Hu, “A novel method of diffraction imaging flow cytometry for sizing microspheres,” Opt. Express 20(20), 22245–22251 (2012).
    [Crossref] [PubMed]
  20. X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
    [Crossref] [PubMed]
  21. O. C. Marina, C. K. Sanders, and J. R. Mourant, “Correlating light scattering with internal cellular structures,” Biomed. Opt. Express 3(2), 296–312 (2012).
    [Crossref] [PubMed]
  22. A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. 22(1), 4–37 (2000).
    [Crossref]
  23. P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vis. 57(2), 137–154 (2004).
    [Crossref]
  24. Y. Freund, “Boosting a weak learning algorithm by majority,” Inf. Comput. 121(2), 256–285 (1995).
    [Crossref]
  25. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci. 55(1), 119–139 (1997).
    [Crossref]
  26. L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
    [PubMed]
  27. D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
    [Crossref] [PubMed]
  28. J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
    [Crossref] [PubMed]
  29. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
    [Crossref] [PubMed]
  30. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
    [Crossref] [PubMed]

2014 (3)

A. Cossarizza and A. Radbruch, “Cytometry for immunology: the marriage continues,” Cytometry A 85(1), 13–14 (2014).
[Crossref] [PubMed]

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Y. Zeng, B. Yan, Q. Sun, S. He, J. Jiang, Z. Wen, and J. Y. Qu, “In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence,” Biomed. Opt. Express 5(3), 653–663 (2014).
[Crossref] [PubMed]

2012 (3)

2011 (2)

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

2009 (1)

J. Bocsi and A. Tárnok, “Cytomics and regenerative medicine,” Cytometry A 75A(8), 707–708 (2009).
[Crossref] [PubMed]

2008 (2)

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

2007 (2)

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

2005 (1)

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
[Crossref]

2004 (1)

P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vis. 57(2), 137–154 (2004).
[Crossref]

2003 (2)

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

2002 (3)

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

2000 (1)

A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. 22(1), 4–37 (2000).
[Crossref]

1999 (2)

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci. 55(1), 119–139 (1997).
[Crossref]

1995 (1)

Y. Freund, “Boosting a weak learning algorithm by majority,” Inf. Comput. 121(2), 256–285 (1995).
[Crossref]

1975 (1)

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

1974 (1)

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

Backhouse, C.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

Backman, V.

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Badizadegan, K.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Bocsi, J.

J. Bocsi and A. Tárnok, “Cytomics and regenerative medicine,” Cytometry A 75A(8), 707–708 (2009).
[Crossref] [PubMed]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Boone, C. W.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Breen, N.

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

Brunsting, A.

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

Capjack, C.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

Capjack, C. E.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

Coates, R. J.

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

Cohen, C.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Cossarizza, A.

A. Cossarizza and A. Radbruch, “Cytometry for immunology: the marriage continues,” Cytometry A 85(1), 13–14 (2014).
[Crossref] [PubMed]

Crowell, J. M.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Dasari, R. R.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[Crossref] [PubMed]

Dryden, K. A.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Duin, R. P. W.

A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. 22(1), 4–37 (2000).
[Crossref]

Dunn, A.

E Etter, M.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Eick, A. A.

Erdbrügger, U.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Eyre, H. J.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Feld, M. S.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Feng, Y.

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Freund, Y.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci. 55(1), 119–139 (1997).
[Crossref]

Y. Freund, “Boosting a weak learning algorithm by majority,” Inf. Comput. 121(2), 256–285 (1995).
[Crossref]

Freyer, J. P.

Goad, C. A.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Gupta, M.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Hansen, K. M.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

He, S.

Herzenberg, L. A.

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

Hiebert, R. D.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Hielscher, A. H.

Hu, X.-H.

Ingram, M. L.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Itzkan, L.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Jain, A. K.

A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. 22(1), 4–37 (2000).
[Crossref]

Janowska-Wieczorek, A.

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

Jiang, J.

Johnson, T. M.

Jones, M. J.

P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vis. 57(2), 137–154 (2004).
[Crossref]

Kirkwood, S. E.

Klibanov, A. L.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Kong, B.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

LaBauve, P. M.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Lannigan, J.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Lee, N. C.

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

Li, D.

Li, L.

Li, X.

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
[Crossref]

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Liu, Q.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Lu, J. Q.

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

Mao, J. C.

A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. 22(1), 4–37 (2000).
[Crossref]

Marina, O. C.

Marquez-Curtis, L.

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

Martin, J. C.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Moran, M. S.

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Moscicki, A. B.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Mourant, J. R.

Mullaney, P. F.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Parks, D.

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Perez, O.

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

Petrácek, J.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

Qiao, X.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Qiu, Y.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

Qu, J. Y.

Radbruch, A.

A. Cossarizza and A. Radbruch, “Cytometry for immunology: the marriage continues,” Cytometry A 85(1), 13–14 (2014).
[Crossref] [PubMed]

Richards-Kortum, R.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[Crossref] [PubMed]

Rimer, B. K.

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

Roederer, M.

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

Rozmus, W.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

Rudy, C. K.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Runowicz, C. D.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Sahaf, B.

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

Salzman, G. C.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

Sanders, C. K.

Saslow, D.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Schapire, R. E.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci. 55(1), 119–139 (1997).
[Crossref]

Shen, D.

Singh, K.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

Smith, R. A.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Solomon, D.

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Song, K.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Su, X.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Su, X. T.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

Sun, Q.

Sun, X.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Swan, J.

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

Taflove, A.

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
[Crossref]

Tárnok, A.

J. Bocsi and A. Tárnok, “Cytomics and regenerative medicine,” Cytometry A 75A(8), 707–708 (2009).
[Crossref] [PubMed]

Thekkek, N.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

Tsui, Y. Y.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Viola, P.

P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vis. 57(2), 137–154 (2004).
[Crossref]

Wax, A.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Wen, Z.

Xie, L.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Xu, J.

Yan, B.

Yang, C.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

Yang, Y.

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Yeager, M.

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

Yu, S.

Zeng, Y.

Zhang, J.

Appl. Opt. (2)

Biomed. Opt. Express (2)

Biophys. J. (2)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref] [PubMed]

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, C. Cohen, and American Cancer Society, “American Cancer Society guideline for the early detection of cervical neoplasia and cancer,” CA Cancer J. Clin. 52(6), 342–362 (2002).
[Crossref] [PubMed]

Cancer (1)

J. Swan, N. Breen, R. J. Coates, B. K. Rimer, and N. C. Lee, “Progress in cancer screening practices in the United States: Results from the 2000 National Health Interview Survey,” Cancer 97(6), 1528–1540 (2003).
[Crossref] [PubMed]

Clin. Chem. (2)

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, and P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21(9), 1297–1304 (1975).
[PubMed]

L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, “The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford,” Clin. Chem. 48(10), 1819–1827 (2002).
[PubMed]

Clin. Lab. Med. (1)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Cytometry A (3)

U. Erdbrügger, C. K. Rudy, M. E Etter, K. A. Dryden, M. Yeager, A. L. Klibanov, and J. Lannigan, “Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry,” Cytometry A 85(9), 756–770 (2014).
[Crossref] [PubMed]

J. Bocsi and A. Tárnok, “Cytomics and regenerative medicine,” Cytometry A 75A(8), 707–708 (2009).
[Crossref] [PubMed]

A. Cossarizza and A. Radbruch, “Cytometry for immunology: the marriage continues,” Cytometry A 85(1), 13–14 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
[Crossref]

IEEE Trans. Pattern Anal. (1)

A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. 22(1), 4–37 (2000).
[Crossref]

Inf. Comput. (1)

Y. Freund, “Boosting a weak learning algorithm by majority,” Inf. Comput. 121(2), 256–285 (1995).
[Crossref]

Int. J. Comput. Vis. (1)

P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vis. 57(2), 137–154 (2004).
[Crossref]

J. Biomed. Opt. (3)

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003).
[Crossref] [PubMed]

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

J. Comput. Syst. Sci. (1)

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci. 55(1), 119–139 (1997).
[Crossref]

Nat. Rev. Cancer (1)

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

H. M. Shapiro, Practical Flow Cytometry (John Wiley & Sons, Inc., 2003).

L. Xie, Y. Yang, X. Sun, X. Qiao, Q. Liu, K. Song, B. Kong, and X. Su, “2D light scattering static cytometry for label-free single cell analysis with submicron resolution,” Cytometry A (to be published).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the experimental setup and concept of the pattern recognition cytometry. Laser light is fiber-coupled to illuminate a single cell on chip. The 2D light scattering patterns are obtained on a CMOS sensor via a microscope objective. Please note the 2D pattern is not obtained on the cell image plane. Pattern recognition is performed on the 2D patterns for cell classification. The core part of the experimental setup is facilitated with a microscope.
Fig. 2
Fig. 2 The performance of the pattern recognition cytometer is verified via comparing experimental patterns with simulated ones. (a) and (b) are the yeast cell microscope images. The diameters of the yeast cells in (a) and (b) are approximately 3.8 and 5.0 μm, respectively. (c) is the experimental 2D light scattering pattern of (a), and (d) is the experimental pattern of (b). (e) and (f) are the Mie theory 2D light scattering patterns for yeast cell models with diameters of 3.8 and 5.0 μm, respectively. The experimental patterns agree well with simulation results in terms of the fringe numbers.
Fig. 3
Fig. 3 Two dimensional light scattering patterns obtained from different yeast cell aggregates. (a) and (b) are the aggregates of three and four yeast cells. (c) and (d) are the 2D light scattering patterns from (a) and (b), respectively.
Fig. 4
Fig. 4 Two dimensional light scattering patterns of normal cervical cell and HeLa cell. (a) and (b) are the microscope images of a normal cervical cell and a HeLa cell. The 2D light scattering patterns of (a) and (b) are shown in figures (c) and (d), respectively.

Tables (2)

Tables Icon

Table 1 Classification of yeast cell aggregates using the pattern recognition cytometry.

Tables Icon

Table 2 Pattern recognition cytometry for the classification of cervical cells.

Metrics