Abstract

Detrimental surface recombination of carriers in InP-based photonic crystal nanobeams containing quantum wells is reduced by employing chemical treatment followed by silica encapsulation. Carrier lifetime is shown to recover to 2.63ns close to the bulk value. This enables us to obtain optically pumped room-temperature continuous-wave nanolasers at 1.55µm integrated onto Silicon on insulator waveguide platform with a threshold of 8µW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal management in hybrid InP/silicon photonic crystal nanobeam laser

Alexandre Bazin, Paul Monnier, Xavier Lafosse, Grégoire Beaudoin, Rémy Braive, Isabelle Sagnes, Rama Raj, and Fabrice Raineri
Opt. Express 22(9) 10570-10578 (2014)

Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate

Katsuaki Tanabe, Masahiro Nomura, Denis Guimard, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 17(9) 7036-7042 (2009)

Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser

Kengo Nozaki, Shota Kita, and Toshihiko Baba
Opt. Express 15(12) 7506-7514 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  2. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20(12), 13108–13114 (2012).
    [Crossref] [PubMed]
  3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [Crossref]
  4. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  5. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
    [Crossref] [PubMed]
  6. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  7. K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
    [Crossref]
  8. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
    [Crossref]
  9. E. Yablonovitch, “Photonic crystals: what’s in a name,” Opt. Photonics News 33(3), 1–2 (2007).
  10. M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
    [Crossref]
  11. A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
    [Crossref] [PubMed]
  12. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  13. K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
    [Crossref]
  14. A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
    [Crossref]
  15. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
    [Crossref]
  16. A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
    [Crossref]
  17. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
  18. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
    [Crossref] [PubMed]
  19. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
    [Crossref] [PubMed]
  20. H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation,” Appl. Phys. Lett. 78(15), 2119–2121 (2001).
    [Crossref]
  21. D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
    [Crossref]
  22. A. Bazin, R. Raj, and F. Raineri, “Design of silica encapsulated high-q photonic crystal nanobeam cavity,” J. Lightwave Technol. 32(5), 952–958 (2014).
    [Crossref]
  23. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
    [Crossref] [PubMed]
  24. T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
    [Crossref]
  25. M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).
  26. H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
    [Crossref]

2014 (3)

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, R. Raj, and F. Raineri, “Design of silica encapsulated high-q photonic crystal nanobeam cavity,” J. Lightwave Technol. 32(5), 952–958 (2014).
[Crossref]

2012 (2)

2011 (2)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

2010 (4)

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

2009 (1)

2008 (1)

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

2007 (2)

E. Yablonovitch, “Photonic crystals: what’s in a name,” Opt. Photonics News 33(3), 1–2 (2007).

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[Crossref]

2006 (2)

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[Crossref] [PubMed]

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

2005 (1)

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

2004 (2)

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2001 (1)

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation,” Appl. Phys. Lett. 78(15), 2119–2121 (2001).
[Crossref]

2000 (1)

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

1991 (1)

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

1988 (1)

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Alén, B.

Altug, H.

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[Crossref]

Arakawa, Y.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Baba, T.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation,” Appl. Phys. Lett. 78(15), 2119–2121 (2001).
[Crossref]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Bagheri, M.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

Bazin, A.

Beaudoin, G.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Bhat, R.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Boroditsky, M.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Braive, R.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Bramerie, L.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

Caneau, C.

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Cheng, C.-C.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Choi, S. J.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

Cojocaru, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Colman, P.

Combrié, S.

Dapkus, P. D.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

De Rossi, A.

Dotor, M. L.

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Englund, D.

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[Crossref]

Fan, J.-F.

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Fuster, D.

Gay, M.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

Gontijo, I.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

González, L.

González, Y.

Grabbe, P.

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Halioua, Y.

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Hasebe, K.

Ichikawa, H.

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation,” Appl. Phys. Lett. 78(15), 2119–2121 (2001).
[Crossref]

Inoshita, K.

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation,” Appl. Phys. Lett. 78(15), 2119–2121 (2001).
[Crossref]

Ishida, S.

Iwamoto, S.

Jackson, M.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kakitsuka, T.

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Karle, T. J.

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Kash, K.

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Krames, M.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Krauss, T.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Kumagai, N.

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lafosse, X.

Le Gratiet, L.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lehoucq, G.

Lengle, K.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

Letartre, X.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Levenson, A.

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Marshall, W. K.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

Martínez, L. J.

Matsuo, S.

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Monnier, P.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Nahory, R. E.

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Nakata, Y.

Nannichi, Y.

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Nomura, M.

Notomi, M.

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Nozaki, K.

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

O’Brien, J. D.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

Oigawa, H.

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Oshima, M.

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Postigo, P. A.

Prieto, I.

Raineri, F.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, R. Raj, and F. Raineri, “Design of silica encapsulated high-q photonic crystal nanobeam cavity,” J. Lightwave Technol. 32(5), 952–958 (2014).
[Crossref]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Raj, R.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

A. Bazin, R. Raj, and F. Raineri, “Design of silica encapsulated high-q photonic crystal nanobeam cavity,” J. Lightwave Technol. 32(5), 952–958 (2014).
[Crossref]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Roelkens, G.

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Sagnes, I.

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Sato, T.

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Scherer, A.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Seassal, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Shih, M. H.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

Shinya, A.

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Strassner, M.

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

Sugahara, H.

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Takeda, K.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Taniyama, H.

van Laere, F.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Van Thourhout, D.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010).
[Crossref]

Vecchi, G.

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

Viktorovitch, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

Vrijen, R.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[Crossref]

Watanabe, H.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

Watanabe, K.

Weaver, A.

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

Wei, Z.-J.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Photonic crystals: what’s in a name,” Opt. Photonics News 33(3), 1–2 (2007).

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Yacomotti, A. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. M. Yacomotti, F. Raineri, G. Vecchi, I. Sagnes, M. Strassner, L. Le Gratiet, R. Raj, and A. Levenson, “Ultrafast nonlinear response around 1.5 µm in 2D AlGaAs/AlOx photonic crystal,” Appl. Phys. B 81(2-3), 333–336 (2005).
[Crossref]

Appl. Phys. Lett. (6)

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880 (2004).
[Crossref]

A. Bazin, K. Lengle, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, and F. Raineri, “Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells,” Appl. Phys. Lett. 104(1), 011102 (2014).
[Crossref]

K. Kash, P. Grabbe, R. E. Nahory, A. Scherer, A. Weaver, and C. Caneau, “Dynamics of photoexcited carriers in micron‐size InP‐InGaAsP etched microstructures probed by picosecond photoluminescence spectroscopy,” Appl. Phys. Lett. 53(22), 2214 (1988).
[Crossref]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation,” Appl. Phys. Lett. 78(15), 2119–2121 (2001).
[Crossref]

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photonics Technol. Lett. 18(10), 1161–1163 (2006).
[Crossref]

J. Appl. Phys. (2)

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010).
[Crossref]

H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. (1)

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes,” J. Phys. 87, 3497–3504 (2000).

Nat. Photonics (3)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (6)

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20(12), 13108–13114 (2012).
[Crossref] [PubMed]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, and F. Raineri, “Thermal management in hybrid InP/silicon photonic crystal nanobeam laser,” Opt. Express 22(9), 10570–10578 (2014).
[Crossref] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[Crossref] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

Opt. Photonics News (1)

E. Yablonovitch, “Photonic crystals: what’s in a name,” Opt. Photonics News 33(3), 1–2 (2007).

Science (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Other (1)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the hybrid nanolaser.
Fig. 2
Fig. 2 Scanning electron microscope pictures of the fabricated sample a) right after bonding, b) and c) after nanobeam cavity patterning.
Fig. 3
Fig. 3 Nanocavities emission wavelength before (blue diamonds) and after passivation (red circles).
Fig. 4
Fig. 4 a) Pump-probe measurement of the cavity resonance wavelength shift for passivated (blue diamonds) and unpassivated (red circles) samples. The dotted lines indicate the fits of the experimental datas with single exponential decay function giving a non-radiative carrier lifetime, respectively for passivated and unpassivated, of 2.63ns and 0.37ns. b) Time resolved photoluminescence of the QWs measured on unpatterned InP-based slab. The dotted line shows the single exponential decay fit of the data with a decay time of 4.1ns.
Fig. 5
Fig. 5 a) CW operation: measured emission power (red dots) and linewidth (black triangles) as a function of the pump power for a PhC nanobeam cavity with a0 = 365nm and r = 115nm. b) Pulsed operation: Emission power as a function of the pump power for unpassivated and passivated PhC nanolasers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v s = V A s τ nr

Metrics