Abstract

Current optical reflectometric techniques used to characterize optical fibers have to trade-off longitudinal range with spatial resolution and therefore struggle to provide simultaneously wide dynamic range (>20dB) and high resolution (<10cm). In this work, we develop and present a technique we refer to as Optical Side Scattering Radiometry (OSSR) capable of resolving discrete and distributed scattering properties of fibers along their length with up to 60dB dynamic range and 5cm spatial resolution. Our setup is first validated on a standard single mode telecoms fiber. Then we apply it to a record-length 11km hollow core photonic band-gap fiber (HC-PBGF) the characterization requirements of which lie far beyond the capability of standard optical reflectometric instruments. We next demonstrate use of the technique to investigate and explain the unusually high loss observed in another HC-PBGF and finally demonstrate its flexibility by measuring a HC-PBGF operating at a wavelength of 2µm. In all of these examples, good agreement between the OSSR measurements and other well-established (but more limited) characterization methods, i.e. cutback loss and OTDR, was obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
7-cell hollow-core photonic bandgap fiber with broad spectral bandwidth and low loss

Xin Zhang, Shoufei Gao, Yingying Wang, Wei Ding, Xiaocong Wang, and Pu Wang
Opt. Express 27(8) 11608-11616 (2019)

Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber

M. N. Petrovich, F. Poletti, J. P. Wooler, A.M. Heidt, N.K. Baddela, Z. Li, D.R. Gray, R. Slavík, F. Parmigiani, N.V. Wheeler, J.R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, John O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F.C. Garcia Gunning, A.D. Ellis, P. Petropoulos, S.U. Alam, and D.J. Richardson
Opt. Express 21(23) 28559-28569 (2013)

Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range

Qingwen Liu, Xinyu Fan, and Zuyuan He
Opt. Express 23(20) 25988-25995 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Hui and M. S. O’Sullivan, Fiber Optic Measurement Techniques (Academic, 2009).
  2. B. L. Danielson, “Optical time-domain reflectometer specifications and performance testing,” Appl. Opt. 24(15), 2313–2322 (1985).
    [Crossref] [PubMed]
  3. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
    [Crossref]
  4. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  5. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  6. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. R. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers (Optical Society of America, 2015), p. Th5A.1.
  7. S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
    [Crossref]
  8. M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, “Optical time domain reflectometer,” Appl. Opt. 16(9), 2375–2379 (1977).
    [Crossref] [PubMed]
  9. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  10. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  11. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
    [Crossref] [PubMed]
  12. F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10), 423–425 (1970).
    [Crossref]
  13. A. R. Tynes, A. D. Pearson, and D. L. Bisbee, “Loss mechanisms and measurements in clad glass fibers and bulk glass,” J. Opt. Soc. Am. 61(2), 143–153 (1971).
    [Crossref]
  14. J. P. Dakin, “A simplified photometer for rapid measurement of total scattering attenuation of fibre optical waveguides,” Opt. Commun. 12(1), 83–88 (1974).
    [Crossref]
  15. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
    [Crossref]
  16. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).
  17. J. Wooler, S. R. Sandoghchi, D. Gray, F. Poletti, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Overcoming the challenges of splicing dissimilar diameter solid-core and hollow-core photonic band gap fibers,” in Workshop on Specialty Optical Fibers and their Applications (OSA, 2013), p. W3.26.
    [Crossref]
  18. S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
    [Crossref] [PubMed]
  19. N. H. Wong, S. R. Sandoghchi, Y. Jung, T. Bradley, N. V. Wheeler, N. Baddela, J. R. Hayes, F. Poletti, M. N. Petrovich, S. Alam, P. Petropoulos, and D. J. Richardson, “Inspection of defect-induced mode coupling in hollow-core photonic bandgap fibers using time-of-flight,” in CLEO:2015 (Optical Society of America, 2015), p. STu1N.6.
  20. R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2µm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
    [Crossref]
  21. C. Markos, “Photonic-crystal fibre: mapping the structure,” Nat. Photonics 9(1), 9–11 (2015).
    [Crossref]

2015 (3)

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

C. Markos, “Photonic-crystal fibre: mapping the structure,” Nat. Photonics 9(1), 9–11 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

2012 (1)

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2µm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

2005 (2)

2002 (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

1985 (1)

1977 (1)

1974 (1)

J. P. Dakin, “A simplified photometer for rapid measurement of total scattering attenuation of fibre optical waveguides,” Opt. Commun. 12(1), 83–88 (1974).
[Crossref]

1971 (1)

1970 (1)

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10), 423–425 (1970).
[Crossref]

Alam, S. U.

Baddela, N.

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Baddela, N. K.

Barnoski, M. K.

Becker, M.

Birks, T. A.

Bisbee, D. L.

Boardman, R. P.

Bradley, T.

Bradley, T. D.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

Byrne, D.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2µm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Chen, Y.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Chigusa, Y.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Corbett, B.

Couny, F.

Dakin, J. P.

J. P. Dakin, “A simplified photometer for rapid measurement of total scattering attenuation of fibre optical waveguides,” Opt. Commun. 12(1), 83–88 (1974).
[Crossref]

Danielson, B. L.

Ellis, A. D.

Farr, L.

Fokoua, E. N.

Froggatt, M.

Garcia Gunning, F. C.

Gifford, D.

Gray, D. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Gruner-Nielsen, L.

Grüner-Nielsen, L.

Gunning, F. C. G.

Hayes, J.

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Hayes, J. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Heidt, A. M.

Herbert, C.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2µm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Jain, S.

Jasion, G. T.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Jensen, S. M.

Kakui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Kapron, F. P.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10), 423–425 (1970).
[Crossref]

Kavanagh, N.

Keck, D. B.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10), 423–425 (1970).
[Crossref]

Kelly, B.

Knight, J. C.

Li, Z.

Lian, Z.

Liu, Z.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

MacSuibhne, N.

Mangan, B. J.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

Markos, C.

C. Markos, “Photonic-crystal fibre: mapping the structure,” Nat. Photonics 9(1), 9–11 (2015).
[Crossref]

Mason, M. W.

Matsui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Maurer, R. D.

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10), 423–425 (1970).
[Crossref]

Melville, R. T.

Mousavi, S. M.

Nagayama, K.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Numkam, E.

Numkam Fokoua, E.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

Numkam Fokoua, E. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

O’Carroll, J.

Pálsdóttir, B.

Parmigiani, F.

Pearson, A. D.

Petropoulos, P.

Petrovich, M.

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Petrovich, M. N.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Phelan, R.

Poletti, F.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Richardson, D. J.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Roberts, P. J.

Rourke, M. D.

Sabert, H.

Saitoh, T.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Sandoghchi, S. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Slavik, R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Slavík, R.

Soller, B.

Somers, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2µm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

St. J. Russell, P.

Tomlinson, A.

Tynes, A. R.

Wheeler, N. V.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Williams, D. P.

Wolfe, M.

Wooler, J. P.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Ye, N.

Zhang, H.

Zhang, T.

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

Zhao, J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17(10), 423–425 (1970).
[Crossref]

Electron. Lett. (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2µm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

J. Lightwave Technol. (1)

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap Fibers for broadband low latency data transmission,” J. Lightwave Technol. PP(99), 1 (2015).

J. Opt. Soc. Am. (1)

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

Nat. Photonics (2)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

C. Markos, “Photonic-crystal fibre: mapping the structure,” Nat. Photonics 9(1), 9–11 (2015).
[Crossref]

Opt. Commun. (1)

J. P. Dakin, “A simplified photometer for rapid measurement of total scattering attenuation of fibre optical waveguides,” Opt. Commun. 12(1), 83–88 (1974).
[Crossref]

Opt. Express (5)

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Other (5)

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. R. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers (Optical Society of America, 2015), p. Th5A.1.

S. R. Sandoghchi, T. Zhang, J. P. Wooler, N. Baddela, N. V. Wheeler, Y. Chen, G. T. Jasion, D. R. Gray, E. R. Numkam Fokoua, J. Hayes, M. Petrovich, F. Poletti, and D. J. Richardson, “First investigation of longitudinal defects in hollow core photonic bandgap fibers,” in Optical Fiber Communication Conference (OSA, 2014), p. M2F.6.
[Crossref]

N. H. Wong, S. R. Sandoghchi, Y. Jung, T. Bradley, N. V. Wheeler, N. Baddela, J. R. Hayes, F. Poletti, M. N. Petrovich, S. Alam, P. Petropoulos, and D. J. Richardson, “Inspection of defect-induced mode coupling in hollow-core photonic bandgap fibers using time-of-flight,” in CLEO:2015 (Optical Society of America, 2015), p. STu1N.6.

J. Wooler, S. R. Sandoghchi, D. Gray, F. Poletti, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Overcoming the challenges of splicing dissimilar diameter solid-core and hollow-core photonic band gap fibers,” in Workshop on Specialty Optical Fibers and their Applications (OSA, 2013), p. W3.26.
[Crossref]

R. Hui and M. S. O’Sullivan, Fiber Optic Measurement Techniques (Academic, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Visual representation of the dynamic range vs. longitudinal resolution of commercial reflectometry systems (> 70 instruments) as compared to the OSSR method described in this work. Different colors in OTDRs and OFDRs sections show different brands and instruments respectively. Point A refers to Luciol LOR-220 IR and Luciol ν-OTDR and point B refers to Anritsu MW9087D, EXFO FTB-7600E, JDSU 8100D and Yokogawa AQ7285A. OFDR systems in this plot belong to Luna Technologies. The detailed list of devices analyzed for this figure is stored in the repository link provided at the end of Acknowledgment section.
Fig. 2
Fig. 2 The setup of the proposed OSSR.
Fig. 3
Fig. 3 The light coupling assembly: (a) the designed arrangement; (b) fabricated and installed on the rewinding machine.
Fig. 4
Fig. 4 Scattering trace of the SMF28e. The inset shows a magnified part of the trace.
Fig. 5
Fig. 5 The CP of the out-scattered power. Inset: magnification of the second half of the trace.
Fig. 6
Fig. 6 (a) The SEM cross-section image of the record-length HC-PBGF. (b) Transmission characteristics of the fiber. The thick arrow shows the position of minimum loss.
Fig. 7
Fig. 7 The OSSR result of end-to-end measurement of the record-length HC-PBGF. The inset shows the very first section of the fiber.
Fig. 8
Fig. 8 (a) OTDR and (b) OSSR measurements of the 11km long HC-PBGF obtained by launching from both ends respectively. The inset (c) shows a magnification of a discrete scattering event.
Fig. 9
Fig. 9 Analysis of the highlighted defect of Fig. 8(c) in the 11km HC-PBGF: (a) The cumulative power trace across the defect; (b) corresponding OSSR trace.
Fig. 10
Fig. 10 An example of a high-loss HC-PBGF: (a) the transmission properties of the fiber; (b) the SEM image of the cross-section showing a uniform and undistorted structure.
Fig. 11
Fig. 11 Analysis via OTDR, (a), and OSSR, (b), of a high-loss defective length of a HC-PBGF. (c) shows the OTDR measurement in the opposite direction as compared to (a); and (d) is the OSSR result in the reverse direction as compared to (b). Wavelength is 1550nm for the OTDR (2ns pulse width) and 1557nm for the OSSR.
Fig. 12
Fig. 12 An example of a HC-PBGF designed to operate at the wavelength of 2µm: a) the SEM image of the cross-section; b) the transmission properties of the fiber.
Fig. 13
Fig. 13 The OSSR result of the 2µm HC-PBGF: The OSSR trace with the loss estimation over the clean section of the fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F(x)= 1 L IS 0 x 10 ( αx+β 10 ) dx = 10 L IS αln( 10 ) 10 β 10 ( 1 10 αx 10 )
α Defect = 28.1μW 48.3μW m 1 ×5.14× 10 3 dB m 1 =0.003dB

Metrics