Abstract

Glass ceramic fibers containing Ni2+ doped LiGa5O8 nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa5O8 nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni2+-doped glass ceramic fiber is promising for broadband optical amplification.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers

Xiongjian Huang, Zaijin Fang, Zixing Peng, Zhijun Ma, Haitao Guo, Jianrong Qiu, and Guoping Dong
Opt. Express 25(17) 19691-19700 (2017)

Ni2+-doped new silicate glass-ceramics for superbroadband optical amplification

Shiqing Xu, Degang Deng, Renqiang Bao, Haidong Ju, Shilong Zhao, Huanping Wang, and Baolin Wang
J. Opt. Soc. Am. B 25(9) 1548-1552 (2008)

Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling

Kummara Venkata Krishnaiah, Yannick Ledemi, Cécile Genevois, Emmanuel Veron, Xavier Sauvage, Steeve Morency, Elton Soares de Lima Filho, Galina Nemova, Mathieu Allix, Younes Messaddeq, and Raman Kashyap
Opt. Mater. Express 7(6) 1980-1994 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
    [Crossref]
  2. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass- ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
    [Crossref]
  3. T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351(27–29), 2304–2309 (2005).
    [Crossref]
  4. S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
    [Crossref]
  5. C. Jiang, “Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers,” Opt. Express 17(8), 6759–6769 (2009).
    [Crossref] [PubMed]
  6. S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
    [Crossref] [PubMed]
  7. S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
    [Crossref] [PubMed]
  8. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
    [Crossref] [PubMed]
  9. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27(15), 1309–1311 (2002).
    [Crossref] [PubMed]
  10. F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19(8), 4292–4297 (1979).
    [Crossref]
  11. R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
    [Crossref]
  12. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
    [Crossref]
  13. P. W. Jaschin and K. B. R. Varma, “Pyroelectric and second harmonic responses from LiTaO3 nanocrystallites evolved in a Li2O-B2O3-Ta2O5 glass system,” CrystEngComm 17(11), 2327–2335 (2015).
    [Crossref]
  14. I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
    [Crossref]
  15. Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).
  16. P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
    [Crossref]
  17. P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
    [Crossref]
  18. S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
    [Crossref]

2015 (2)

P. W. Jaschin and K. B. R. Varma, “Pyroelectric and second harmonic responses from LiTaO3 nanocrystallites evolved in a Li2O-B2O3-Ta2O5 glass system,” CrystEngComm 17(11), 2327–2335 (2015).
[Crossref]

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

2012 (1)

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

2009 (1)

2008 (2)

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

2007 (4)

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

2005 (2)

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass- ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351(27–29), 2304–2309 (2005).
[Crossref]

2003 (1)

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

2002 (1)

2001 (1)

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

2000 (1)

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

1999 (1)

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
[Crossref]

1979 (1)

F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19(8), 4292–4297 (1979).
[Crossref]

Beall, G. H.

Bennani, F.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
[Crossref]

Borrelli, N. F.

B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27(15), 1309–1311 (2002).
[Crossref] [PubMed]

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

Ceccato, R.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Chen, D.

Chiussi, S.

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

Chu, B.

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

Dal Maschio, R.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Dong, H.

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

Duan, P.

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

Feng, G.

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

Ferrari, M.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Galeener, F. L.

F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19(8), 4292–4297 (1979).
[Crossref]

Gialanella, S.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

González, P.

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

Gonzalez-Calbet, J. M.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Hao, J.

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

He, Q.

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

Horibuchi, K.

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351(27–29), 2304–2309 (2005).
[Crossref]

Husson, E.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
[Crossref]

Jaschin, P. W.

P. W. Jaschin and K. B. R. Varma, “Pyroelectric and second harmonic responses from LiTaO3 nanocrystallites evolved in a Li2O-B2O3-Ta2O5 glass system,” CrystEngComm 17(11), 2327–2335 (2015).
[Crossref]

Jiang, C.

Jiang, N.

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Leon, B.

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

Li, N.

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

Lipinska-Kalita, K. E.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Liste, S.

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

López, I.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Mariotto, G.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Mendez, B.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Montagna, M.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass- ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

Nogales, E.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Ohishi, Y.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass- ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351(27–29), 2304–2309 (2005).
[Crossref]

Ohki, Y.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Peche, A.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Perez-Amor, M.

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

Pinckney, L. R.

Piqueras, J.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Proust, C.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
[Crossref]

Qiao, Y.

Qiu, J.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Ramirez-Castellanos, J.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Reaney, I. M.

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

Repelin, Y.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
[Crossref]

Rossi, F.

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

Ruan, J.

Samson, B. N.

Serra, J.

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

Sun, X.

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

Suzuki, T.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass- ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351(27–29), 2304–2309 (2005).
[Crossref]

Tick, P. A.

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

Utrilla, A. D.

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

Varma, K. B. R.

P. W. Jaschin and K. B. R. Varma, “Pyroelectric and second harmonic responses from LiTaO3 nanocrystallites evolved in a Li2O-B2O3-Ta2O5 glass system,” CrystEngComm 17(11), 2327–2335 (2015).
[Crossref]

Wan, Z.

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

Wang, J.

Wang, Y.

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

Wu, B.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Xu, S.

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

Yang, H.

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

Zeng, H.

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

Zhou, S.

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[Crossref] [PubMed]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

Zhu, B.

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

Zhu, C.

Appl. Phys. Lett. (1)

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass- ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

CrystEngComm (1)

P. W. Jaschin and K. B. R. Varma, “Pyroelectric and second harmonic responses from LiTaO3 nanocrystallites evolved in a Li2O-B2O3-Ta2O5 glass system,” CrystEngComm 17(11), 2327–2335 (2015).
[Crossref]

J. Appl. Phys. (2)

R. Ceccato, R. Dal Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, “Nucleation of Ga2O3 nanocrystals in the K2O-Ga2O3-SiO2 glass system,” J. Appl. Phys. 90(5), 2522 (2001).
[Crossref]

S. Zhou, H. Dong, H. Zeng, B. Wu, B. Zhu, H. Yang, S. Xu, Z. Wan, and J. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102(6), 063106 (2007).
[Crossref]

J. Nanomater. (1)

Y. Wang, N. Li, P. Duan, X. Sun, B. Chu, and Q. He, “Properties and photocatalytic activity of β-Ga2O3 nanorods under simulated solar irradiation,” J. Nanomater. 10(5), 191793 (2015).

J. Non-Cryst. Solids (2)

P. González, J. Serra, S. Liste, S. Chiussi, B. Leon, and M. Perez-Amor, “Raman spectroscopic study of bioactive silica based glasses,” J. Non-Cryst. Solids 320(1–3), 92–99 (2003).
[Crossref]

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351(27–29), 2304–2309 (2005).
[Crossref]

J. Phys. Chem. C (2)

I. López, A. D. Utrilla, E. Nogales, B. Mendez, J. Piqueras, A. Peche, J. Ramirez-Castellanos, and J. M. Gonzalez-Calbet, “In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties,” J. Phys. Chem. C 116(6), 3935–3943 (2012).
[Crossref]

S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, and J. Qiu, “Intense infrared luminescence in transparent glass-ceramic containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C 111(20), 7335–7338 (2007).
[Crossref]

J. Phys. Chem. Solids (1)

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999).
[Crossref]

J. Phys. D (1)

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, “Transparent Ni2+-doped lithium-alumino-silicate glass- ceramics for broadband near-infrared light source,” J. Phys. D 40(8), 2472–2475 (2007).
[Crossref]

Nanotechnology (1)

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

P. A. Tick, N. F. Borrelli, and I. M. Reaney, “The relationship between structure and transparency in glass-ceramic materials,” Opt. Mater. 15(1), 81–91 (2000).
[Crossref]

Phys. Rev. B (1)

F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19(8), 4292–4297 (1979).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Images of glass rod before (a) and after (b) drawing process. (c) XRD patterns of glass rod before and after drawing process, GC (heat treated in 800 °C for 5 hours) and glass after secondary melting. (d) DTA curve of the precursor glass.
Fig. 2
Fig. 2 (a) Optical image of the precursor fiber in cross section, (b) and (c) the EPMA images of the precursor fiber in local cross section.
Fig. 3
Fig. 3 (a) Raman spectra of (1) precursor fiber core, (2) GC fiber clad, (3) GC fiber core, (4) precursor glass and (5) GC heat treated in 800 °C for 5 hours. (b) Raman spectra at different positions of GC fiber. The inset of (b) is the image of GC fiber cross section.
Fig. 4
Fig. 4 (a) TEM image of GC fiber, the inset is the corresponding SAED pattern. (b) HRTEM of GC fiber.
Fig. 5
Fig. 5 PL spectra of the precursor fiber and GC fiber excited by 980 nm laser.

Metrics