Abstract

Here, we report the formation of Bessel-like beam array from periodic patterns fabricated by the four-beam interference lithography. Characteristics of the generated Bessel-like beams depend on geometrical parameters of the fabricated microaxicon-like structures, which can be easily controlled via the laser processing parameters. The output beam characteristics disclose the attributes of Bessel beams. The demonstrated method enables an easy fabrication of angular-tolerant wavefront detectors, optical tweezers, optical imaging systems or materials processing tools, having a broad range of applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High quality quasi-Bessel beam generated by round-tip axicon

Oto Brzobohatý, Tomáš Čižmár, and Pavel Zemánek
Opt. Express 16(17) 12688-12700 (2008)

Self-action and regularized self-guiding of pulsed Bessel-like beams in air

D.E. Roskey, M. Kolesik, J.V. Moloney, and E.M. Wright
Opt. Express 15(16) 9893-9907 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  2. R. Grunwald, U. Griebner, F. Tschirschwitz, E. T. J. Nibbering, T. Elsaesser, V. Kebbel, H. J. Hartmann, and W. Jüptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25(13), 981–983 (2000).
    [Crossref] [PubMed]
  3. T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
    [Crossref] [PubMed]
  4. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
    [Crossref]
  5. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [Crossref] [PubMed]
  6. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [Crossref]
  7. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  8. J. Ježek, T. Cizmár, V. Nedela, and P. Zemánek, “Formation of long and thin polymer fiber using nondiffracting beam,” Opt. Express 14(19), 8506–8515 (2006).
    [Crossref] [PubMed]
  9. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007).
    [Crossref] [PubMed]
  10. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004).
    [Crossref] [PubMed]
  11. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
    [Crossref]
  12. T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210(3), 319–323 (2003).
    [Crossref] [PubMed]
  13. S. Klewitz, P. Leiderer, S. Herminghaus, and S. Sogomonian, “Tunable stimulated Raman scattering by pumping with Bessel beams,” Opt. Lett. 21(4), 248–250 (1996).
    [Crossref] [PubMed]
  14. R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
    [Crossref]
  15. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
    [Crossref]
  16. F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
    [Crossref]
  17. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
    [Crossref] [PubMed]
  18. S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
    [Crossref]
  19. J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22(2), 117–119 (1997).
    [Crossref] [PubMed]
  20. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
    [Crossref]
  21. K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48(2), 125–129 (1989).
    [Crossref]
  22. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [Crossref] [PubMed]
  23. A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
    [Crossref]
  24. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).
    [Crossref] [PubMed]
  25. S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” J. Opt. A, Pure Appl. Opt. 7(1), 40–46 (2005).
    [Crossref]
  26. L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
    [Crossref]
  27. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44(8), 592 (1954).
    [Crossref]
  28. R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, “Thin-film microlens arrays with non-spherical elements,” J. Eur. Opt. Soc. Part A 6(6), 663–671 (1997).
    [Crossref]
  29. R. Grunwald, U. Neumann, V. Kebbel, H. J. Kühn, K. Mann, U. Leinhos, H. Mischke, and D. Wulff-Molder, “Vacuum-ultraviolet beam array generation by flat micro-optical structures,” Opt. Lett. 29(9), 977–979 (2004).
    [Crossref] [PubMed]
  30. W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
    [Crossref]
  31. A. Žukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
    [Crossref] [PubMed]
  32. U. Ellmer, Fabrication of Micro-Axicons by Laser Lithography (VDM Publishing, 2010).
  33. A. J. Das and K. S. Narayan, “Observation of Bessel beams from electric-field-induced patterns on polymer surfaces,” Opt. Lett. 34(21), 3391–3393 (2009).
    [Crossref] [PubMed]
  34. J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37(7), 1274–1276 (2012).
    [Crossref] [PubMed]
  35. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [Crossref] [PubMed]
  36. A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
    [Crossref]
  37. E. Stankevičius, M. Malinauskas, and G. Raciukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer sz2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
    [Crossref]
  38. E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
    [Crossref]
  39. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
    [Crossref]
  40. A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
    [Crossref]
  41. R. Grunwald, Thin Film Micro-Optics (Elsevier, Amsterdam, 2007).
  42. O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008).
    [Crossref] [PubMed]

2015 (2)

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

2014 (1)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

2013 (1)

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

2012 (3)

2011 (2)

E. Stankevičius, M. Malinauskas, and G. Raciukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer sz2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

2009 (1)

2008 (4)

2007 (2)

T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

2006 (3)

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

J. Ježek, T. Cizmár, V. Nedela, and P. Zemánek, “Formation of long and thin polymer fiber using nondiffracting beam,” Opt. Express 14(19), 8506–8515 (2006).
[Crossref] [PubMed]

2005 (2)

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” J. Opt. A, Pure Appl. Opt. 7(1), 40–46 (2005).
[Crossref]

2004 (2)

2003 (1)

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210(3), 319–323 (2003).
[Crossref] [PubMed]

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

2001 (2)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

2000 (2)

1998 (1)

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[Crossref]

1997 (3)

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, “Thin-film microlens arrays with non-spherical elements,” J. Eur. Opt. Soc. Part A 6(6), 663–671 (1997).
[Crossref]

J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22(2), 117–119 (1997).
[Crossref] [PubMed]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

1996 (2)

S. Klewitz, P. Leiderer, S. Herminghaus, and S. Sogomonian, “Tunable stimulated Raman scattering by pumping with Bessel beams,” Opt. Lett. 21(4), 248–250 (1996).
[Crossref] [PubMed]

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

1992 (1)

1989 (2)

1987 (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

1954 (1)

Agate, B.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Ahluwalia, B. S.

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” J. Opt. A, Pure Appl. Opt. 7(1), 40–46 (2005).
[Crossref]

Arimoto, R.

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Bainier, C.

Balevicius, Z.

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

Bataviciute, G.

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

Bhuyan, M. K.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

Bijeon, J.-L.

Boothroyd, S. A.

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

Bouchal, Z.

Brown, C. T. A.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Brzobohatý, O.

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Chichkov, B. N.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref] [PubMed]

Chlup, M.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[Crossref]

Choudhury, A.

Chrostowski, J.

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

Chu, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Cizmár, T.

Cižmár, T.

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Comrie, M.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Courjon, D.

T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007).
[Crossref] [PubMed]

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210(3), 319–323 (2003).
[Crossref] [PubMed]

Courvoisier, F.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

Das, A. J.

Denschlag, J. H.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

Dholakia, K.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Dudley, J. M.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

Durnin, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Ehlert, R.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, “Thin-film microlens arrays with non-spherical elements,” J. Eur. Opt. Soc. Part A 6(6), 663–671 (1997).
[Crossref]

Elsaesser, T.

El-Tamer, A.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Farsari, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Friberg, A. T.

Gadonas, R.

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref] [PubMed]

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Garcés-Chávez, V.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Gedvilas, M.

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

Gérard, D.

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Griebner, U.

Grosjean, T.

T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007).
[Crossref] [PubMed]

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210(3), 319–323 (2003).
[Crossref] [PubMed]

Grunwald, R.

Gunn-Moore, F.

T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Hartmann, H. J.

Herminghaus, S.

Hinze, U.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Hu, Y.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Huang, W.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Inoue, T.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

Jacquot, M.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

Ježek, J.

Jhe, W.

Juodkazis, S.

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

Jüptner, W.

Kawata, S.

Kebbel, V.

Kikuchi, H.

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48(2), 125–129 (1989).
[Crossref]

Kim, J. A.

Kizuka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

Klewitz, S.

Kollárová, V.

Kühn, H. J.

Lang, F.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Lee, K. I.

Lee, K.-S.

Leiderer, P.

Leinhos, U.

Li, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

MacDonald, R. P.

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

Malinauskas, M.

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref] [PubMed]

E. Stankevičius, M. Malinauskas, and G. Raciukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer sz2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]

Mann, K.

Marcinkevicius, A.

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

Martin, J.

Matsuo, S.

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

Matsuoka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

McLeod, J. H.

Melninkaitis, A.

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Misawa, H.

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

Mischke, H.

Mizeikis, V.

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

Narayan, K. S.

Nedela, V.

Neumann, U.

Nibbering, E. T. J.

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Noh, H. R.

Ohtsu, M.

Okamoto, T.

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Plain, J.

Proust, J.

Raciukaitis, G.

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

E. Stankevičius, M. Malinauskas, and G. Raciukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer sz2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]

Reinecke, W.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, “Thin-film microlens arrays with non-spherical elements,” J. Eur. Opt. Soc. Part A 6(6), 663–671 (1997).
[Crossref]

Reinhardt, C.

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref] [PubMed]

Rolland, J. P.

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Saloma, C.

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Schmid, S.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

Šciuka, M.

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

Sheppard, C. J. R.

Sibbett, W.

T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Sogomonian, S.

Stankevicius, E.

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

E. Stankevičius, M. Malinauskas, and G. Raciukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer sz2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]

Stevenson, D. J.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Syrett, B. A.

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

Tanaka, T.

Tao, S. H.

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” J. Opt. A, Pure Appl. Opt. 7(1), 40–46 (2005).
[Crossref]

Thalhammer, G.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

Tikuišis, K. K.

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

Tsampoula, X.

T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
[Crossref] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Tschirschwitz, F.

Turunen, J.

Uehara, K.

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48(2), 125–129 (1989).
[Crossref]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210(3), 319–323 (2003).
[Crossref] [PubMed]

Vasara, A.

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Wagner, J.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[Crossref]

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Winkler, K.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

Woggon, S.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, “Thin-film microlens arrays with non-spherical elements,” J. Eur. Opt. Soc. Part A 6(6), 663–671 (1997).
[Crossref]

Wulff-Molder, D.

Yang, L.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Yuan, X. C.

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” J. Opt. A, Pure Appl. Opt. 7(1), 40–46 (2005).
[Crossref]

Yuan, X.-C.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zemánek, P.

Zhang, J.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

Zhang, L.-S.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Žukauskas, A.

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref] [PubMed]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (2)

K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48(2), 125–129 (1989).
[Crossref]

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

Appl. Phys. Lett. (3)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006).
[Crossref]

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013).
[Crossref]

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

J. Eur. Opt. Soc. Part A (1)

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, “Thin-film microlens arrays with non-spherical elements,” J. Eur. Opt. Soc. Part A 6(6), 663–671 (1997).
[Crossref]

J. Microsc. (1)

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210(3), 319–323 (2003).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, “The generation of an array of nondiffracting beams by a single composite computer generated hologram,” J. Opt. A, Pure Appl. Opt. 7(1), 40–46 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

A. Marcinkevičius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[Crossref]

Nat. Photonics (1)

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8(8), 159 (2006).
[Crossref]

Opt. Commun. (4)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[Crossref]

R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007).
[Crossref] [PubMed]

R. Grunwald, U. Griebner, F. Tschirschwitz, E. T. J. Nibbering, T. Elsaesser, V. Kebbel, H. J. Hartmann, and W. Jüptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25(13), 981–983 (2000).
[Crossref] [PubMed]

J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22(2), 117–119 (1997).
[Crossref] [PubMed]

S. Klewitz, P. Leiderer, S. Herminghaus, and S. Sogomonian, “Tunable stimulated Raman scattering by pumping with Bessel beams,” Opt. Lett. 21(4), 248–250 (1996).
[Crossref] [PubMed]

K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[Crossref] [PubMed]

R. Grunwald, U. Neumann, V. Kebbel, H. J. Kühn, K. Mann, U. Leinhos, H. Mischke, and D. Wulff-Molder, “Vacuum-ultraviolet beam array generation by flat micro-optical structures,” Opt. Lett. 29(9), 977–979 (2004).
[Crossref] [PubMed]

A. J. Das and K. S. Narayan, “Observation of Bessel beams from electric-field-induced patterns on polymer surfaces,” Opt. Lett. 34(21), 3391–3393 (2009).
[Crossref] [PubMed]

J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37(7), 1274–1276 (2012).
[Crossref] [PubMed]

Opt. Mater. (1)

A. Žukauskas, G. Batavičiūtė, M. Ščiuka, Z. Balevičius, A. Melninkaitis, and M. Malinauskas, “Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080),” Opt. Mater. 39, 224–231 (2015).
[Crossref]

Phys. Procedia (1)

E. Stankevičius, M. Malinauskas, and G. Raciukaitis, “Fabrication of scaffolds and micro-lenses array in a negative photopolymer sz2080 by multi-photon polymerization and four-femtosecond-beam interference,” Phys. Procedia 12, 82–88 (2011).
[Crossref]

Phys. Rev. Lett. (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Žukauskas, K. K. Tikuišis, M. Ščiuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280–84289 (2012).
[Crossref]

Other (2)

R. Grunwald, Thin Film Micro-Optics (Elsevier, Amsterdam, 2007).

U. Ellmer, Fabrication of Micro-Axicons by Laser Lithography (VDM Publishing, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The principle of microaxicons-like formation process via the four-beam interference lithography: a) irradiation of a photopolymer by the four-beam interference intensity distribution (right) and enlarged photomodified area (left); b) development process; c) fabricated periodically arranged round-tip microstructures.
Fig. 2
Fig. 2 SEM images and profiles of microaxicon-like structures fabricated via the four-beam interference lithography using a different laser irradiation dose: a) ~3.7 J (the average laser power ~0.37 W and laser exposure time 10 s); b) ~4.7 J (the average laser power ~0.47 W and laser exposure time 10 s); c) ~27.9 J (the average laser power ~0.93 W and laser exposure time 30 s). The period is ~60 μm. SEM micrographs of the structures are tilted by 40 deg. The scale bars represent 20 µm.
Fig. 3
Fig. 3 The scheme of the optical performance test system (a) and 2D and 3D intensity distribution of beams exiting from different types of the structures: b,e – I type; c,f – II type and d,g – III type, at distance 200 μm (b,c) and 350 μm (d) from the sample. The scale bars represent 20 µm.
Fig. 4
Fig. 4 Intensity distributions of the Bessel-like beams formed using different types of the microstructures: a) I; c) II; e) III at the distance of 200 μm (a,c) and 350 μm (e) from the sample and comparison of the average of the transverse intensity profiles taken along the white lines (black curves) with the numerical fit of the Bessel beam intensity distribution when k = 0.9 (b), k = 1.15 (d) and k = 0.65 (f) (red lines). The scale bars represent 20 µm.
Fig. 5
Fig. 5 Bessel beam formation by spherically-shaped (a) and cone-shaped (b) refractive axicons (schematically) [41].
Fig. 6
Fig. 6 Beams intensity distributions exiting from the different type of the structures (type I (a,b,c,d), type II (e,f,g,h) and type III (i,j,k,l)) in the transverse plane, at different distances from the apex of the microstructures: 50 μm (a,e,i); 100 μm (b,f,j); 200 μm (c,g,k); 500 μm(d,h,l). The scale bars represent 20 µm.
Fig. 7
Fig. 7 Alteration of the generated beams parameters (the conical angle β, fringe distance, central spot diameter and intensity) along the axial position z from different type of the structures: I type (a,b); II type (c,d); III type (e,f). Brown circles show the estimated conical angle along the propagation direction (a,c,e); olive circles – the measured fringe distance along z (a,c,e); red circles – the measured intensity values at different axial distance (b,d,f); black squares – the measured central spot diameter along z (b,d,f). Blue curves illustrate theoretically estimated Gaussian beam divergence when the beam waist diameter is 3 μm (b), 2.4 μm (d) and 5.4 μm (f); green curves – the estimated Gaussian beam intensity distribution along z when the initial spot size is equal to the spot size at the measured highest intensity value (4.2 μm (b), 3.9 μm (d) and 7.1 μm (f)). Arrows show the ordinate axis. DOF means depth of focus and belongs to black curves.

Tables (1)

Tables Icon

Table 1 Geometrical parameters of the structures.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(r,β) J 0 2 ( k r)
k =2πsinβ/λ
v s (β)=1/ Λ s =sinβ/λ
d(z)= d 0 1+ ( z z 0 z R ) 2
z R =π d 0 2 /(4λ)

Metrics