Abstract

Proton exchanged channel waveguides in x-cut single-crystal lithium niobate thin film could avoid optical leakage loss which existed in the z-cut case. Indicated by simulations, the mechanism and condition of the optical leakage loss were studied. The light energy in the exchanged layer and the mode sizes were calculated to optimize the parameters for fabrication. By a very short time (3 minutes) proton exchange process without anneal, the channel waveguide with 2 μm width and 0.16 μm exchanged depth in the x-cut lithium niobate thin film had a propagation loss as low as 0.2 dB/cm at 1.55 μm. Furthermore, the Y-junctions based on the low-loss waveguide were designed and fabricated. For a Y-junction based on the 3 μm wide channel waveguide with 8000 μm bending radius, the total transmission could reach 85% ~90% and the splitting ratio maintained at a stable level around 1:1. The total length was smaller than 1 mm, much shorter than the conventional Ti-diffused and proton exchanged Y-junctions in bulk lithium niobate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications

Lutong Cai, Ashraf Mahmoud, and Gianluca Piazza
Opt. Express 27(7) 9794-9802 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  2. Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
    [Crossref] [PubMed]
  3. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  4. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
    [Crossref]
  5. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref] [PubMed]
  6. R. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” arXiv:1409.6351v1 (2014).
  7. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
    [Crossref] [PubMed]
  8. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  9. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  10. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  11. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref] [PubMed]
  12. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
    [Crossref] [PubMed]
  13. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  14. H. Sasaki and I. Anderson, “Theoretical and experimental studies on active Y-junctions in optical waveguides,” IEEE J. Quantum Electron. 14(11), 883–892 (1978).
    [Crossref]
  15. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15(16), 10288–10293 (2007).
    [Crossref] [PubMed]
  16. W. K. Burns, R. P. Moeller, C. H. Bulmer, and H. Yajima, “Optical waveguide channel branches in Ti-diffused LiNbO(3).,” Appl. Opt. 19(17), 2890–2896 (1980).
    [Crossref] [PubMed]
  17. I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” IEEE J. Micro. Opt. Acoust. 2(1), 7–12 (1978).
    [Crossref]
  18. L. Cai, S. L. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
    [Crossref] [PubMed]
  19. K. Ogusu and I. Tanaka, “Optical strip waveguide: an experiment,” Appl. Opt. 19(19), 3322–3325 (1980).
    [Crossref] [PubMed]
  20. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [Crossref] [PubMed]
  21. Lumerical Solutions, http://www.lumerical.com/
  22. J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
    [Crossref]
  23. S. T. Peng and A. A. Oliner, “Leakage and resonance effects on strip waveguides for integrated optics,” Trans. IECE Jpn. E-61(3), 151–154 (1978).
  24. N. Uchida, “Optical waveguide loaded with high refractive-index strip film,” Appl. Opt. 15(1), 179–182 (1976).
    [Crossref] [PubMed]
  25. A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
    [Crossref]
  26. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
    [Crossref]
  27. M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
    [Crossref]
  28. R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  29. O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
    [Crossref]
  30. F. J. Mustieles, E. Ballesteros, and P. Baquero, “Theoretical S-bend profile for optimization of optical waveguide radiation losses,” IEEE Photonics Technol. Lett. 5(5), 551–553 (1993).
    [Crossref]
  31. N. Grossard, J. Hauden, and H. Porte, “Low-loss and stable integrated optical Y-junction on lithium niobate modulators,” in Proceedings of European Conference on Integrated Optics (ECIO, 2007), paper ThG08.
  32. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13(11), 1050–1052 (1988).
    [Crossref] [PubMed]
  33. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21(11), 794–796 (1996).
    [Crossref] [PubMed]

2015 (6)

2013 (2)

2012 (2)

2009 (1)

2007 (4)

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
[Crossref]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15(16), 10288–10293 (2007).
[Crossref] [PubMed]

2002 (1)

2001 (1)

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

1997 (1)

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

1996 (1)

1993 (2)

F. J. Mustieles, E. Ballesteros, and P. Baquero, “Theoretical S-bend profile for optimization of optical waveguide radiation losses,” IEEE Photonics Technol. Lett. 5(5), 551–553 (1993).
[Crossref]

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

1991 (1)

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

1988 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1980 (2)

1978 (3)

I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” IEEE J. Micro. Opt. Acoust. 2(1), 7–12 (1978).
[Crossref]

S. T. Peng and A. A. Oliner, “Leakage and resonance effects on strip waveguides for integrated optics,” Trans. IECE Jpn. E-61(3), 151–154 (1978).

H. Sasaki and I. Anderson, “Theoretical and experimental studies on active Y-junctions in optical waveguides,” IEEE J. Quantum Electron. 14(11), 883–892 (1978).
[Crossref]

1976 (1)

Anderson, I.

H. Sasaki and I. Anderson, “Theoretical and experimental studies on active Y-junctions in optical waveguides,” IEEE J. Quantum Electron. 14(11), 883–892 (1978).
[Crossref]

I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” IEEE J. Micro. Opt. Acoust. 2(1), 7–12 (1978).
[Crossref]

Arbore, M. A.

Baida, F. I.

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Ballesteros, E.

F. J. Mustieles, E. Ballesteros, and P. Baquero, “Theoretical S-bend profile for optimization of optical waveguide radiation losses,” IEEE Photonics Technol. Lett. 5(5), 551–553 (1993).
[Crossref]

Baquero, P.

F. J. Mustieles, E. Ballesteros, and P. Baquero, “Theoretical S-bend profile for optimization of optical waveguide radiation losses,” IEEE Photonics Technol. Lett. 5(5), 551–553 (1993).
[Crossref]

Bernal, M.-P.

Bo, F.

Bortz, M. L.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

Brown, T.

Bulmer, C. H.

Burns, W. K.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

W. K. Burns, R. P. Moeller, C. H. Bulmer, and H. Yajima, “Optical waveguide channel branches in Ti-diffused LiNbO(3).,” Appl. Opt. 19(17), 2890–2896 (1980).
[Crossref] [PubMed]

Cabrera, J. M.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Cai, L.

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Chen, L.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Chiles, J.

Chou, M. H.

Collet, M.

Courjal, N.

de Almeida, J. M. M. M.

J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
[Crossref]

De la Paliza, G.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Diziain, S.

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Eknoyan, O.

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fathpour, S.

Fejer, M. M.

Findakly, T. K.

Gao, F.

Garcia-Cabanes, A.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Geiss, R.

Grange, R.

Green, W. M. J.

Greenblatt, A. S.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Han, S. L.

Howerton, M. M.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Hu, H.

Khan, S.

Kley, E. B.

Langrock, C.

Leonberger, F. J.

Li, J.

Li, W.

Li, Y.

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Loncar, M.

Lu, H.

Ma, J.

Matous, W.

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

Méndez, A.

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

Moeller, R. P.

Mustieles, F. J.

F. J. Mustieles, E. Ballesteros, and P. Baquero, “Theoretical S-bend profile for optimization of optical waveguide radiation losses,” IEEE Photonics Technol. Lett. 5(5), 551–553 (1993).
[Crossref]

Nam, S. W.

Neurgaonkar, R. R.

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

Ogusu, K.

Oliner, A. A.

S. T. Peng and A. A. Oliner, “Leakage and resonance effects on strip waveguides for integrated optics,” Trans. IECE Jpn. E-61(3), 151–154 (1978).

Osgood, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Ottinger, T.

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

Peng, S. T.

S. T. Peng and A. A. Oliner, “Leakage and resonance effects on strip waveguides for integrated optics,” Trans. IECE Jpn. E-61(3), 151–154 (1978).

Pertsch, T.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Rabiei, P.

Reano, R. M.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Ricken, R.

Rooks, M. J.

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

Sadani, B.

Saravi, S.

Sasaki, H.

H. Sasaki and I. Anderson, “Theoretical and experimental studies on active Y-junctions in optical waveguides,” IEEE J. Quantum Electron. 14(11), 883–892 (1978).
[Crossref]

Schrempel, F.

Sekaric, L.

Sergeyev, A.

Setzpfandt, F.

Skeath, P. R.

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Stenger, V.

Suchoski, P. G.

Takesue, H.

Tanaka, I.

Taylor, H. F.

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

Tünnermann, A.

Uchida, N.

Ulliac, G.

Vlasov, Y. A.

Wan, S.

Wang, C.

Wang, J.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, Y.

Wood, M. G.

Xie, X.

Xu, J.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Yajima, H.

Yamamoto, Y.

Zhang, G.

Zhang, Q.

Zhu, Z.

Appl. Opt. (3)

Appl. Phys. B (2)

A. Méndez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73(5-6), 485–488 (2001).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (3)

O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neurgaonkar, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[Crossref]

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62(17), 2012–2014 (1993).
[Crossref]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[Crossref]

IEEE J. Micro. Opt. Acoust. (1)

I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” IEEE J. Micro. Opt. Acoust. 2(1), 7–12 (1978).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Sasaki and I. Anderson, “Theoretical and experimental studies on active Y-junctions in optical waveguides,” IEEE J. Quantum Electron. 14(11), 883–892 (1978).
[Crossref]

M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3,” IEEE J. Quantum Electron. 27(3), 593–601 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. J. Mustieles, E. Ballesteros, and P. Baquero, “Theoretical S-bend profile for optimization of optical waveguide radiation losses,” IEEE Photonics Technol. Lett. 5(5), 551–553 (1993).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Opt. Eng. (1)

J. M. M. M. de Almeida, “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3,” Opt. Eng. 46(6), 064601 (2007).
[Crossref]

Opt. Express (9)

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15(16), 10288–10293 (2007).
[Crossref] [PubMed]

L. Cai, S. L. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
[Crossref] [PubMed]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

Opt. Lett. (5)

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Trans. IECE Jpn. (1)

S. T. Peng and A. A. Oliner, “Leakage and resonance effects on strip waveguides for integrated optics,” Trans. IECE Jpn. E-61(3), 151–154 (1978).

Other (3)

Lumerical Solutions, http://www.lumerical.com/

N. Grossard, J. Hauden, and H. Porte, “Low-loss and stable integrated optical Y-junction on lithium niobate modulators,” in Proceedings of European Conference on Integrated Optics (ECIO, 2007), paper ThG08.

R. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” arXiv:1409.6351v1 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) and (c): schematic image of the cross-section of the PE channel waveguides in z-cut and x-cut LNOI. Directions “x” and “z” corresponded to the crystal x-axis and z-axis, respectively. (b) and (d): Neff of the fundamental modes of the planar (red and black lines) and channel (blue dashed lines) waveguides at 1.55 μm in z-cut and x-cut LNOI as a function of T. W and D were fixed at 2 μm and 0.16 μm, respectively. Inset in (b): the Ex distribution of the channel waveguide modes along the x direction in (a). Inset in (d): the Ex distribution of the channel waveguide modes along the z direction in (c). The green and pink lines corresponded to the green and pink stars on the blue dashed lines, respectively.
Fig. 2
Fig. 2 Calculated leakage losses of the z-cut (black curve, TM-like mode) and x-cut (red curve, TE-like mode) PE channel waveguides in Fig. 1 as a function of T at a wavelength of 1.55 μm. Below T = 0.72 μm, the leakage loss of the x-cut channel waveguide was zero.
Fig. 3
Fig. 3 Dependence of the (a) light energy in the PE region and (b) mode sizes on D for various W (1 ~5 μm) when T was fixed at 0.6 μm for the TE-like guided mode at 1.55 μm. Dependence of the (c) light energy in the PE region and (d) mode sizes on T for various W (1 ~5 μm) when D was fixed at 0.16 μm for the TE-like mode at 1.55 μm.
Fig. 4
Fig. 4 (a) SEM image of the channel waveguide surface. (b) Simulated fundamental mode profile with W = 2 μm, D = 0.16 μm and T = 0.6 μm for the TE-like guided mode at 1.55 μm. The PE region was indicated by the red dashed line. The mode size was 1.4 μm2. (c) Measured transmission (normalized) of the TE-like guided mode in the fabricated channel waveguide. The propagation loss was 0.2 dB/cm at 1.55 μm. (d) Black stars: propagation losses of the channel waveguides with 3 minutes, 5 minutes and 15 minutes PE, corresponding to D = 0.16 μm, 0.21 μm and 0.37 μm, respectively. Red line: fitting curve of the three points.
Fig. 5
Fig. 5 Schematic diagram of the symmetrical Y-junction. Between two red dashed lines: the Y-junction section consisting of two arms. On the left and right of the red dashed lines: input and output straight waveguides. Between the green dashed lines: a straight waveguide connecting two identical arcs.
Fig. 6
Fig. 6 Dependence of the bend loss on the radius of the bend waveguide. An exponential relationship between them was obvious. Inset: schematic diagram of the cross-section of the bend waveguide in simulation.
Fig. 7
Fig. 7 Optical microscope image (top view) of the (a) Y-junctions captured in the Transmission-mode and (b) polished end-face captured in the Reflection-mode.
Fig. 8
Fig. 8 Measured transmissions of #1 (black), #2 (blue), and #3 (red) Y-junction around the wavelength of 1.55 μm. All the transmissions have been normalized by a reference channel waveguide. #3 Y-junction (R = 8000 μm) had the highest transmission approximately ranging from 85% to 90%.
Fig. 9
Fig. 9 Splitting ratio of the Y-junctions with W = 3 μm (red and black curves) and W = 5 μm (green and blue curves) in different input coupling conditions around the wavelength of 1.55 μm. The input coupling condition was changed by moving the input waveguide end-face laterally relative to the fiber tip. The splitting ratio of the Y-junction with the input waveguide of W = 3 μm stabilized at about 1:1.

Tables (1)

Tables Icon

Table 1 Parameters related to Y-junctions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= 4.34 L (lnRln R ˜ ) where R ˜ = 1 K (1 1 K 2 ) and K= I max I min I max + I min

Metrics