Abstract

A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb3+-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral filtering effect on mode-locking regimes transition: similariton-dissipative soliton fiber laser

Zhiqiang Wang, Li Zhan, Xiao Fang, and Hao Luo
J. Opt. Soc. Am. B 34(11) 2325-2333 (2017)

Properties of normal-dispersion femtosecond fiber lasers

Andy Chong, William H. Renninger, and Frank W. Wise
J. Opt. Soc. Am. B 25(2) 140-148 (2008)

Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser

Mohamed A. Abdelalim, Yury Logvin, Diaa A. Khalil, and Hanan Anis
Opt. Express 17(4) 2264-2279 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [Crossref] [PubMed]
  2. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
    [Crossref]
  3. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  4. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
    [Crossref] [PubMed]
  5. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  6. S. Lefrancois, C.-H. Liu, M. L. Stock, T. S. Sosnowski, A. Galvanauskas, and F. W. Wise, “High-energy similariton fiber laser using chirally coupled core fiber,” Opt. Lett. 38(1), 43–45 (2013).
    [Crossref] [PubMed]
  7. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  8. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber laser,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  9. H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1100809 (2014).
  10. J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
    [Crossref] [PubMed]
  11. E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
    [Crossref] [PubMed]
  12. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [Crossref]
  13. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31(18), 2734–2736 (2006).
    [Crossref] [PubMed]
  14. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
    [Crossref]
  15. X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-Fiber Dissipative Solitons Evolution in a Compact Passively Yb-Doped Mode-Locked Fiber Laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
    [Crossref]
  16. X. Liu, H. Wang, Z. Yan, Y. Wang, W. Zhao, W. Zhang, L. Zhang, Z. Yang, X. Hu, X. Li, D. Shen, C. Li, and G. Chen, “All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45°-tilted fiber grating,” Opt. Express 20(17), 19000–19005 (2012).
    [Crossref] [PubMed]
  17. H. E. Kotb, M. A. Abdelalim, and H. Anis, “Effect of mode locking technique on the filtering bandwidth limitation in all normal dispersion femtosecond fiber laser,” Proc. SPIE 8961, 89613A (2014).
    [Crossref]
  18. H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. (in press).
  19. L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
  20. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A. 81(2), 023811 (2010).
  21. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).
  22. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [Crossref] [PubMed]
  23. X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).
  24. A. M. Weiner, Ultrafast Optics (John Wiley & Sons, Inc., 2009), Chap. 4.
  25. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
    [Crossref]

2015 (1)

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).

2014 (2)

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Effect of mode locking technique on the filtering bandwidth limitation in all normal dispersion femtosecond fiber laser,” Proc. SPIE 8961, 89613A (2014).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1100809 (2014).

2013 (2)

S. Lefrancois, C.-H. Liu, M. L. Stock, T. S. Sosnowski, A. Galvanauskas, and F. W. Wise, “High-energy similariton fiber laser using chirally coupled core fiber,” Opt. Lett. 38(1), 43–45 (2013).
[Crossref] [PubMed]

L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).

2012 (3)

2011 (1)

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

2010 (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A. 81(2), 023811 (2010).

2009 (1)

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

2008 (3)

2006 (3)

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

2004 (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2002 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Abdelalim, M. A.

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1100809 (2014).

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Effect of mode locking technique on the filtering bandwidth limitation in all normal dispersion femtosecond fiber laser,” Proc. SPIE 8961, 89613A (2014).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. (in press).

Anis, H.

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Effect of mode locking technique on the filtering bandwidth limitation in all normal dispersion femtosecond fiber laser,” Proc. SPIE 8961, 89613A (2014).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1100809 (2014).

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. (in press).

Buckley, J.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Burgoyne, B.

Chan, C. C.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[Crossref] [PubMed]

Chen, G.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber laser,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cui, Y.

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Ding, E.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

Dudley, J. M.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Ferrari, A. C.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Galvanauskas, A.

Gao, C.

Godbout, N.

Han, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Hasan, T.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Hu, X.

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Kieu, K.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Kotb, H. E.

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Effect of mode locking technique on the filtering bandwidth limitation in all normal dispersion femtosecond fiber laser,” Proc. SPIE 8961, 89613A (2014).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1100809 (2014).

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. (in press).

Kracht, D.

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Kutz, J. N.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

Lacroix, S.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Lefrancois, S.

Li, C.

Li, X.

Liu, C.-H.

Liu, X.

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-Fiber Dissipative Solitons Evolution in a Compact Passively Yb-Doped Mode-Locked Fiber Laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

X. Liu, H. Wang, Z. Yan, Y. Wang, W. Zhao, W. Zhang, L. Zhang, Z. Yang, X. Hu, X. Li, D. Shen, C. Li, and G. Chen, “All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45°-tilted fiber grating,” Opt. Express 20(17), 19000–19005 (2012).
[Crossref] [PubMed]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A. 81(2), 023811 (2010).

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Mao, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

O’Neill, W.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Pan, Z.

L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).

Peacock, A. C.

Popa, D.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Prochnow, O.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber laser,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

Rozhin, A. G.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Ruehl, A.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Shen, D.

Shlizerman, E.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

Sosnowski, T. S.

Stock, M. L.

Sun, Z.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Tang, D. Y.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[Crossref] [PubMed]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Tsang, Y. H.

Wandt, D.

Wang, F.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Wang, H.

Wang, J.

L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).

Wang, Y.

Wise, F.

Wise, F. W.

S. Lefrancois, C.-H. Liu, M. L. Stock, T. S. Sosnowski, A. Galvanauskas, and F. W. Wise, “High-energy similariton fiber laser using chirally coupled core fiber,” Opt. Lett. 38(1), 43–45 (2013).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber laser,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wu, J.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[Crossref] [PubMed]

Yan, Z.

Yang, Z.

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

Zhang, L.

Zhang, W.

Zhao, J.

L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).

Zhao, L. M.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[Crossref] [PubMed]

Zhao, W.

Zhuo, Z.

L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).

Appl. Phys. Lett. (1)

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1100809 (2014).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

Laser Phys. Lett. (1)

L. Zhang, Z. Zhuo, Z. Pan, Y. Wang, J. Zhao, and J. Wang, “Investigation of pulse splitting behavior in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Phys. Rev. A. (1)

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A. 81(2), 023811 (2010).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Effect of mode locking technique on the filtering bandwidth limitation in all normal dispersion femtosecond fiber laser,” Proc. SPIE 8961, 89613A (2014).
[Crossref]

Sci. Rep. (1)

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).

Other (3)

A. M. Weiner, Ultrafast Optics (John Wiley & Sons, Inc., 2009), Chap. 4.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3,2718 (2013).

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. (in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the active similariton laser cavity having the SF at four positions to test its effect on the temporal and spectral properties of the pulse; QWP is the quarter wave plate, HWP is the half wave plate and ISO is the Faraday isolator.
Fig. 2
Fig. 2 The numerical normalized temporal profile of the chirped pulse at the end of LSMF2 (SMF2), the through port of the PBS (Pol), the rejection port of the PBS (Output 1) and the coupler output: (a) Case 1, (b) Case 2, (c) Case3, and (d) Case 4. (e) Plot of the FWHM of the chirped pulse
Fig. 3
Fig. 3 The numerical normalized SPD of the chirped pulse at the end of LSMF2 (SMF2), the through port of the PBS (Pol), Output 1 and the coupler output: (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4.
Fig. 4
Fig. 4 (a) Evolution of the total peak power through the four mode-locked laser cavities. (b) Spectral bandwidth at various locations inside the cavity. The locations of LYb, LSMF2, wave plates and polarizer are shown for one of the cases (Case 4) for the sake of clarity. 1: QWP1; 2: HWP; 3: the through port of the PBS; 4: Faraday isolator; 5: QWP2; 6: Lumped SF.
Fig. 5
Fig. 5 (a) The normalized AC of the chirped pulse at Output 1 for Case 2 and Case 3. Temporal profile of the de-chirped pulses: (b) Case 1 and Case 2 and (c) Case 3 and Case 4. Normalized AC of the de-chirped pulses: (d) Case 1 and Case 2 and (e) Case 3 and Case 4.
Fig. 6
Fig. 6 (a) Plot of FWHM of the de-chirped pulse. (b) Plot of peak power of the chirped and de-chirped pulses.
Fig. 7
Fig. 7 Plot of (a) pulse energy at Output 1 and (b) percentage of the pulse energy of the side pulses to the total energy.
Fig. 8
Fig. 8 Evolution of the spectral and temporal RMS widths through the four mode-locked laser cavities: (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4. The solid lines represent the u-field, while the dashed lines represent the v-field. 1: QWP1; 2 HWP; 3: the through port of the PBS; 4: Faraday isolator; 5: QWP2; 6: Lumped SF. Virtual lengths are set to these components for the sake of illustration.
Fig. 9
Fig. 9 (a) The numerical normalized temporal profile of the chirped pulse at the through port of the PBS (Pol) and the rejection port of the PBS (Output 1) for Case 2 at Esat equals 6.85 nJ. (b) The corresponding AC profiles at the same value of Esat.
Fig. 10
Fig. 10 (a) Measured normalized transfer function of the lumped SF. (b) Schematic diagram of the diffraction gratings pair combined with a retro-reflector mirror.
Fig. 11
Fig. 11 Experimental mode-locking SPD at Output 1 (blue solid line) and the coupler output (red dashed line) for (a) Case 2 and (b) Case 3. Experimental AC profile of (c) the chirped pulse and (d) de-chirped pulse at Output 1. Case 2: blue solid line and Case 3: red dashed line.
Fig. 12
Fig. 12 Experimental results of all-fiber similariton laser; (a) the mode-locking SPD and (b) de-chirped pulse at the power splitter output.

Tables (2)

Tables Icon

Table 1 Excess Kurtosis factor of the chirped pulses

Tables Icon

Table 2 Chirped pulse energy at the end of LSMF2 and SF loss for each laser cavity

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u z + i β 2 2 2 u t 2 β 3 6 3 u t 3 + α f 2 u= g( z ) 2 ( 1+ 1 Ω g 2 2 t 2 )u +iγ[ | u | 2 +A | v | 2 ]u+iγB u * v 2 .
v z + i β 2 2 2 v t 2 β 3 6 3 v t 3 + α f 2 v= g( z ) 2 ( 1+ 1 Ω g 2 2 t 2 )v +iγ[ | v | 2 +A | u | 2 ]v+iγB v * u 2 .
g( z )= g o 1+( ( | a | 2 )/ E sat ) .
B W th = 2 2π 1 L[ ( 1ζ ) β 2 a 1 b 1 γ ( l+ a 1 ) Ω g 2 ] .

Metrics