Abstract

We compare the optical response of wurtzite and zinc blende GaP nanowire arrays for varying geometry of the nanowires. We measure reflectance spectra of the arrays and extract from these measurements the absorption in the nanowires. To support our experimental findings and to allow for more detailed investigations of the optical response of the nanowire arrays than possible in experiments, we perform electromagnetic modeling. This modeling highlights the validity of the extraction of the absorptance from reflectance spectra, as well as limitations of the extraction due to anti-reflection properties of the nanowires. In our combined experimental and theoretical study, we find for both zinc blende and wurtzite nanowires an absorption resonance that can be tuned into the ultraviolet by decreasing the diameter of the nanowires. This peak stops blue-shifting with decreasing nanowire diameter at a wavelength of approximately 330 nm for zinc blende GaP. In contrast, for the wurtzite GaP nanowires, the resonance continues blue-shifting at 310 nm for the smallest diameters we succeeded in fabricating. We interpret this as a difference in refractive index between wurtzite and zinc blende GaP in this wavelength region. These results open up for optical applications through resonant absorption in the visible and ultraviolet wavelength regions with both zinc blende and wurtzite GaP nanowire arrays. Notably, zinc blende and wurtzite GaP support resonant absorption deeper into the ultraviolet region than previously found for zinc blende and wurtzite InP and InAs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable absorption resonances in the ultraviolet for InP nanowire arrays

Mahtab Aghaeipour, Nicklas Anttu, Gustav Nylund, Lars Samuelson, Sebastian Lehmann, and Mats-Erik Pistol
Opt. Express 22(23) 29204-29212 (2014)

Efficient light management in vertical nanowire arrays for photovoltaics

Nicklas Anttu and H. Q. Xu
Opt. Express 21(S3) A558-A575 (2013)

Modal analysis of enhanced absorption in silicon nanowire arrays

Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, C. Martijn de Sterke, and Ross C. McPhedran
Opt. Express 19(S5) A1067-A1081 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
    [Crossref] [PubMed]
  2. K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
    [Crossref]
  3. R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater. 24(11), 1975–1991 (2012).
    [Crossref]
  4. N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires,” Mater. Sci. Eng. 60(1-6), 1–51 (2008).
    [Crossref]
  5. N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
    [Crossref] [PubMed]
  6. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  7. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
    [Crossref] [PubMed]
  8. J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
    [Crossref] [PubMed]
  9. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
    [Crossref] [PubMed]
  10. K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
    [Crossref] [PubMed]
  11. R. Agarwal and C. M. Lieber, “Semiconductor nanowires: Optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
    [Crossref]
  12. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
    [Crossref] [PubMed]
  13. Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B 52(19), 14078–14085 (1995).
    [Crossref] [PubMed]
  14. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
    [Crossref]
  15. A. Dorn, P. M. Allen, and M. G. Bawendi, “Electrically controlling and monitoring InP nanowire growth from solution,” ACS Nano 3(10), 3260–3265 (2009).
    [Crossref] [PubMed]
  16. S. Koh, “Strategies for controlled placement of nanoscale building blocks,” Nanoscale Res. Lett. 2(11), 519–545 (2007).
    [Crossref] [PubMed]
  17. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
    [Crossref] [PubMed]
  18. P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in III-V nanowires: From random toward engineered polytypism,” IEEE J. Sel. Top. Quantum Electron. 17(4), 829–846 (2011).
    [Crossref]
  19. H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
    [Crossref] [PubMed]
  20. T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
    [Crossref] [PubMed]
  21. G. Chiarotti and G. Chiarotti, SpringerMaterials; (Springer-Verlag GmbH, Heidelberg, 1993), http://materials.springer.com/lb/docs/sm_lbs_978-3-540-47397-8_6 .
  22. M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, and M. E. Pistol, “Tunable absorption resonances in the ultraviolet for InP nanowire arrays,” Opt. Express 22(23), 29204–29212 (2014).
    [Crossref] [PubMed]
  23. N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
    [Crossref] [PubMed]
  24. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [Crossref] [PubMed]
  25. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
    [Crossref] [PubMed]
  26. A. De and C. E. Pryor, “Predicted band structures of III-V semiconductors in the wurtzite phase,” Phys. Rev. B 81(15), 155210 (2010).
    [Crossref]
  27. A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
    [Crossref]
  28. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [Crossref]
  29. A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
    [Crossref]
  30. R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
    [Crossref] [PubMed]
  31. More information available at the home page of NanoDim at www.nanodim.net .
  32. N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
    [Crossref] [PubMed]
  33. N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
    [Crossref]
  34. A. Borghesi and G. Guizzetti, Gallium Phosphide (GaP), in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1997), pp. 445–464.
  35. N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
    [Crossref]
  36. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  37. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
    [Crossref] [PubMed]

2014 (4)

M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, and M. E. Pistol, “Tunable absorption resonances in the ultraviolet for InP nanowire arrays,” Opt. Express 22(23), 29204–29212 (2014).
[Crossref] [PubMed]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

2013 (6)

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

2012 (4)

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater. 24(11), 1975–1991 (2012).
[Crossref]

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
[Crossref]

2011 (5)

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in III-V nanowires: From random toward engineered polytypism,” IEEE J. Sel. Top. Quantum Electron. 17(4), 829–846 (2011).
[Crossref]

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

2010 (3)

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

A. De and C. E. Pryor, “Predicted band structures of III-V semiconductors in the wurtzite phase,” Phys. Rev. B 81(15), 155210 (2010).
[Crossref]

2009 (2)

A. Dorn, P. M. Allen, and M. G. Bawendi, “Electrically controlling and monitoring InP nanowire growth from solution,” ACS Nano 3(10), 3260–3265 (2009).
[Crossref] [PubMed]

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

2008 (2)

N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires,” Mater. Sci. Eng. 60(1-6), 1–51 (2008).
[Crossref]

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

2007 (1)

S. Koh, “Strategies for controlled placement of nanoscale building blocks,” Nanoscale Res. Lett. 2(11), 519–545 (2007).
[Crossref] [PubMed]

2006 (1)

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: Optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

2004 (1)

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

2001 (3)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1995 (1)

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B 52(19), 14078–14085 (1995).
[Crossref] [PubMed]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Åberg, I.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Abrand, A.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Agarwal, R.

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: Optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

Aghaeipour, M.

Algra, R. E.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Allen, P. M.

A. Dorn, P. M. Allen, and M. G. Bawendi, “Electrically controlling and monitoring InP nanowire growth from solution,” ACS Nano 3(10), 3260–3265 (2009).
[Crossref] [PubMed]

Anttu, N.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, and M. E. Pistol, “Tunable absorption resonances in the ultraviolet for InP nanowire arrays,” Opt. Express 22(23), 29204–29212 (2014).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Asoli, D.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Assali, S.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

Bakkers, E. P. A. M.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Bao, J.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

Bauer, G.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

Bawendi, M. G.

A. Dorn, P. M. Allen, and M. G. Bawendi, “Electrically controlling and monitoring InP nanowire growth from solution,” ACS Nano 3(10), 3260–3265 (2009).
[Crossref] [PubMed]

Bechstedt, F.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
[Crossref]

Belabbes, A.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
[Crossref]

Bell, D. C.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

Berg, A.

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

Bolinsson, J.

P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in III-V nanowires: From random toward engineered polytypism,” IEEE J. Sel. Top. Quantum Electron. 17(4), 829–846 (2011).
[Crossref]

Borgström, M.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Borgström, M. T.

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

Cai, Y.

N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires,” Mater. Sci. Eng. 60(1-6), 1–51 (2008).
[Crossref]

Capasso, F.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

Carlberg, P.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Caroff, P.

P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in III-V nanowires: From random toward engineered polytypism,” IEEE J. Sel. Top. Quantum Electron. 17(4), 829–846 (2011).
[Crossref]

Chueh, Y. L.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Cui, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

De, A.

A. De and C. E. Pryor, “Predicted band structures of III-V semiconductors in the wurtzite phase,” Phys. Rev. B 81(15), 155210 (2010).
[Crossref]

Deppert, K.

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Dick, K. A.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

Diedenhofen, S. L.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Dorn, A.

A. Dorn, P. M. Allen, and M. G. Bawendi, “Electrically controlling and monitoring InP nanowire growth from solution,” ACS Nano 3(10), 3260–3265 (2009).
[Crossref] [PubMed]

Duan, X.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Ek, M.

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Enckevort, W. J. P. V.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Fan, Z.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Feiner, L. F.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Fujisawa, S.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Fukui, T.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Furthmüller, J.

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
[Crossref]

Gao, Q.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Gass, R.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Gómez Rivas, J.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Grzela, G.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Gustafsson, A.

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

Hara, S.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Haverkort, J. E. M.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

Hayashida, A.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Heurlin, M.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Hiruma, K.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Hobbs, R. G.

R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater. 24(11), 1975–1991 (2012).
[Crossref]

Holmes, J. D.

R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater. 24(11), 1975–1991 (2012).
[Crossref]

Hua, B.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Huang, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Ikonic, Z.

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B 52(19), 14078–14085 (1995).
[Crossref] [PubMed]

Immink, G. G. W.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Immink, G. W. G.

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

Inkson, J. C.

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B 52(19), 14078–14085 (1995).
[Crossref] [PubMed]

Iqbal, A.

Jackson, H. E.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Jacobsson, D.

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

Jagadish, C.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Jamshidi, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Janssen, O. T. A.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Javey, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Johansson, J.

P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in III-V nanowires: From random toward engineered polytypism,” IEEE J. Sel. Top. Quantum Electron. 17(4), 829–846 (2011).
[Crossref]

Joyce, H. J.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

Kapadia, R.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Koh, S.

S. Koh, “Strategies for controlled placement of nanoscale building blocks,” Nanoscale Res. Lett. 2(11), 519–545 (2007).
[Crossref] [PubMed]

Kriegner, D.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

Lehmann, S.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, and M. E. Pistol, “Tunable absorption resonances in the ultraviolet for InP nanowire arrays,” Opt. Express 22(23), 29204–29212 (2014).
[Crossref] [PubMed]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

Leu, P. W.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Lieber, C. M.

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: Optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Lindgren, D.

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Magnusson, M. H.

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Mårtensson, T.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Meijerink, A.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Mohan, P.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Montazeri, M.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Montelius, L.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Motohisa, J.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Noborisaka, J.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Nylund, G.

Paiman, S.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Panse, C.

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
[Crossref]

Pemasiri, K.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Petkov, N.

R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater. 24(11), 1975–1991 (2012).
[Crossref]

Pistol, M. E.

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, and M. E. Pistol, “Tunable absorption resonances in the ultraviolet for InP nanowire arrays,” Opt. Express 22(23), 29204–29212 (2014).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

Plissard, S.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

Plissard, S. R.

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

Pryor, C. E.

A. De and C. E. Pryor, “Predicted band structures of III-V semiconductors in the wurtzite phase,” Phys. Rev. B 81(15), 155210 (2010).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Rathore, A. A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Ruebusch, D. J.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Samuelson, L.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

M. Aghaeipour, N. Anttu, G. Nylund, L. Samuelson, S. Lehmann, and M. E. Pistol, “Tunable absorption resonances in the ultraviolet for InP nanowire arrays,” Opt. Express 22(23), 29204–29212 (2014).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M. E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Seifert, W.

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Smith, L. M.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Srivastava, G. P.

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B 52(19), 14078–14085 (1995).
[Crossref] [PubMed]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Storm, K.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

Takei, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Tan, H. H.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Tomioka, K.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Trägårdh, J.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

Vainorius, N.

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

Verheijen, M. A.

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Vlieg, E.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

Vu, T. T. T.

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Wagner, J. B.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Wallenberg, L. R.

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Wallentin, J.

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

Wang, J.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Wang, N.

N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires,” Mater. Sci. Eng. 60(1-6), 1–51 (2008).
[Crossref]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Wong-Leung, J.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

Wu, M.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Wu, P. M.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Xu, H. Q.

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, L.

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yarrison-Rice, J.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Yartsev, A.

Yu, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Zardo, I.

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

Zehender, T.

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

Zhang, R. Q.

N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires,” Mater. Sci. Eng. 60(1-6), 1–51 (2008).
[Crossref]

Zhang, X.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

Zou, J.

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

ACS Nano (2)

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

A. Dorn, P. M. Allen, and M. G. Bawendi, “Electrically controlling and monitoring InP nanowire growth from solution,” ACS Nano 3(10), 3260–3265 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: Optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

Chem. Mater. (1)

R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater. 24(11), 1975–1991 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in III-V nanowires: From random toward engineered polytypism,” IEEE J. Sel. Top. Quantum Electron. 17(4), 829–846 (2011).
[Crossref]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

J. Cryst. Growth (1)

A. Berg, S. Lehmann, N. Vainorius, A. Gustafsson, M. E. Pistol, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, “Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching,” J. Cryst. Growth 386, 47–51 (2014).
[Crossref]

J. Nanotechnol. (1)

K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, and T. Fukui, “Fabrication of axial and radial heterostructures for semiconductor nanowires by using selective-area metal-organic vapor-phase epitaxy,” J. Nanotechnol. 2012, 169284 (2012).
[Crossref]

Mater. Sci. Eng. (1)

N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires,” Mater. Sci. Eng. 60(1-6), 1–51 (2008).
[Crossref]

Nano Lett. (11)

N. Anttu, M. Heurlin, M. T. Borgström, M. E. Pistol, H. Q. Xu, and L. Samuelson, “Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples,” Nano Lett. 13(6), 2662–2667 (2013).
[Crossref] [PubMed]

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical properties of rotationally twinned InP nanowire heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref] [PubMed]

S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Direct band gap wurtzite gallium phosphide nanowires,” Nano Lett. 13(4), 1559–1563 (2013).
[Crossref] [PubMed]

K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, “Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures,” Nano Lett. 9(2), 648–654 (2009).
[Crossref] [PubMed]

T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, “Nanowire arrays defined by nanoimprint lithography,” Nano Lett. 4(4), 699–702 (2004).
[Crossref]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. W. Immink, W. J. P. V. Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett. 11(3), 1259–1264 (2011).
[Crossref] [PubMed]

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref] [PubMed]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Nano Res. (1)

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

S. Koh, “Strategies for controlled placement of nanoscale building blocks,” Nanoscale Res. Lett. 2(11), 519–545 (2007).
[Crossref] [PubMed]

Nanotechnology (1)

T. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. G. Immink, J. E. M. Haverkort, and E. P. A. M. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref] [PubMed]

Nature (2)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (4)

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

A. De and C. E. Pryor, “Predicted band structures of III-V semiconductors in the wurtzite phase,” Phys. Rev. B 81(15), 155210 (2010).
[Crossref]

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, “Electronic bands of III-V semiconductor polytypes and their alignment,” Phys. Rev. B 86(7), 075208 (2012).
[Crossref]

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B 52(19), 14078–14085 (1995).
[Crossref] [PubMed]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Other (3)

G. Chiarotti and G. Chiarotti, SpringerMaterials; (Springer-Verlag GmbH, Heidelberg, 1993), http://materials.springer.com/lb/docs/sm_lbs_978-3-540-47397-8_6 .

A. Borghesi and G. Guizzetti, Gallium Phosphide (GaP), in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1997), pp. 445–464.

More information available at the home page of NanoDim at www.nanodim.net .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 30° tilted SEM image of periodic (a) zinc blende and (b) wurtzite GaP nanowire arrays fabricated by metal organic vapor phase epitaxy (inset scale bar 200 nm). Overview and high resolution transmission electron microscopy images of (c) zinc blende and (d) wurtzite nanowires displaying details on the crystal structure.
Fig. 2
Fig. 2 (a) Absorption spectra of GaP nanowire arrays obtained from electromagnetic modeling of the reflectance of zinc blende nanowires. (b)-(c) Experimentally determined absorption in zinc blende (b) and wurtzite (c) nanowires for varying nanowire diameter. The absorption spectra in (a)-(c) are obtained from modeled (a) or measured (b)-(c) reflection spectra through the dual-pass approximation [Eq. (1)]. In the electromagnetic modeling, we used the specular reflectance R 0 to represent the collected reflection signal (due to the small numerical aperture of 0.28 in the experiments). Thus, we used R 0 for R in Eq. (1) to calculate the estimate for T and in the consecutive calculation of A = 1 – RT. Notice that for clarity, each consecutive spectrum in (a)-(c) has been vertically shifted down by an additional 15% with respect to the spectrum for the thickest diameter. (d) Wavelength-position of the HE11 absorption resonance, that is, the peak showing up at the longest wavelength (see (b) for an indication of this peak), as a function of nanowire diameter for a nominally constant nanowire length (L ≈1.2 μm for wurtzite and L ≈1.5 μm for zinc blende). The inset shows the real part of the refractive index of zinc blende GaP [34].
Fig. 3
Fig. 3 Tabulated refractive index of zinc blende GaP (solid line) together with extracted refractive index for wurtzite GaP (circles). For this approximate extraction, we assumed for simplicity an isotropic optical response for the wurtzite GaP. After this, we used Eq. (2) to relate Re(n(λ peak)) to λ peak and D, with c determined from the zinc blende samples. Notice that each array shows a specific D dependent value for λ peak. Thus, each array gives rise to one extracted value (one circle).
Fig. 4
Fig. 4 (a) Absorption spectra of wurtzite GaP nanowire arrays with different lengths and approximately identical diameter (D ≈76 nm) extracted from measured reflectance spectra through Eq. (1). (b) Wavelength position of the main absorption peak as a function of nanowire diameter for three different nanowire lengths L. (c) Modelled absorption via dual-pass approximation [Eq. (1)] for a zinc blende nanowire array with (dashed-dotted line) and without (dashed line) a pedestal for L = 1.2 µm. (d) Schematics of modeled nanowire arrays with and without a pedestal. Dped is the diameter of the pedestal and Lped is the height of the pedestal. θ ped indicates the angle of the side of the pedestal to the substrate.
Fig. 5
Fig. 5 Modeled absorption spectra of zinc blende GaP nanowires for varying diameter; (a) D = 50 nm, (b) D = 100 nm, and (c) D = 150 nm. We show results using the dual-pass approximation (solid line) as well as values for the fully modelled A (dashed lines). Here, for the dual-pass approximation, Eq. (1), we used the specular reflectance R 0 to represent the collected reflection signal (due to the small numerical aperture of 0.28 in the experiments). Thus, we used R 0 for R in Eq. (1) to calculate the estimate for T and in the consecutive calculation of A = 1 – RT. In the fully modelled A, we take values for both R and T directly from the modelling, without using the dual-pass approximation to determine T from R.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( 1 R s u b ) R R s u b .
λ peak = c D Re ( n ( λ peak ) ) .

Metrics