Abstract

Today, vertical cavity surface emitting lasers (VCSELs) are used in many high-end applications, for which the laser lifetime is a critical parameter. Changes in the spatial distribution of the various emission modes of the VCSEL can be used as an early sign of device degradation, enhancing the speed and detail of failure mode analysis. We have developed a ferrule-top combined atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) probe that can be used to analyze the transverse mode pattern of the 850 nm radiation at a <200 nm spatial resolution. During accelerated lifetime testing, the newly developed method shows that small local changes in the optical output can already be detected before any sign of device degradation is observed with conventional methods.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opto-mechanical probe for combining atomic force microscopy and optical near-field surface analysis

C. H. van Hoorn, D. C. Chavan, B. Tiribilli, G. Margheri, A. J. G. Mank, F. Ariese, and D. Iannuzzi
Opt. Lett. 39(16) 4800-4803 (2014)

Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy

Gregor Schürmann, Wilfried Noell, Urs Staufer, Nico F. de Rooij, Rolf Eckert, Jan M. Freyland, and Harry Heinzelmann
Appl. Opt. 40(28) 5040-5045 (2001)

Mechanically tunable organic vertical-cavity surface emitting lasers (VCSELs) for highly sensitive stress probing in dual-modes

Yu Yang, Yuan Zhou, Zhifu Liao, Jiancan Yu, Yuanjing Cui, Inmaculada Garcia-Moreno, Zhiyu Wang, Angel Costela, and Guodong Qian
Opt. Express 23(4) 4385-4396 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
    [Crossref]
  2. R. Michalzik, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers(Springer, 2013).
  3. O. Ueda, Reliability and Degradation of III-V Optical Devices (Artech House Publishers, 1996).
  4. O. Ueda, “On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation,” Jpn. J. Appl. Phys. 49, 090001 (2010).
    [Crossref]
  5. C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
    [Crossref]
  6. T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
    [Crossref]
  7. A. R. Weidberg, “VCSEL reliability in ATLAS and development of robust arrays,” J. Instrum. 7, C01098 (2012).
    [Crossref]
  8. M. D. Holton, P. Rees, and P. R. Dunstan, “Imaging concentric modulations in transverse modes of a vertical-cavity surface emitting laser using a scanning near-field optical microscope,” J. Appl. Phys. 101, 023103 (2007).
    [Crossref]
  9. I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
    [Crossref]
  10. K. J. Knopp, D. H. Christensen, G. V. Rhodes, J. M. Pomeroy, B. B. Goldberg, and et al., “Spatio-spectral mapping of multimode vertical cavity surface emitting lasers,” J. Lightwave Technol. 17, 1429 (1999).
    [Crossref]
  11. N. H. Lu, W. C. Lin, and D. P. Tsai, “Tapping-mode tuning-fork near-field scanning optical microscopy of low power semiconductor lasers,” J. Microsc. 202, 172–175 (2001).
    [Crossref] [PubMed]
  12. N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).
  13. W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
    [Crossref]
  14. C. H. van Hoorn, D. C. Chavan, B. Tiribilli, G. Margheri, A. J. G. Mank, F. Ariese, and D. Iannuzzi, “Opto-mechanical probe for combining atomic force microscopy and optical near-field surface analysis,” Opt. Lett. 39, 4800 (2014).
    [Crossref] [PubMed]

2014 (1)

2012 (1)

A. R. Weidberg, “VCSEL reliability in ATLAS and development of robust arrays,” J. Instrum. 7, C01098 (2012).
[Crossref]

2010 (1)

O. Ueda, “On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation,” Jpn. J. Appl. Phys. 49, 090001 (2010).
[Crossref]

2008 (1)

T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
[Crossref]

2007 (1)

M. D. Holton, P. Rees, and P. R. Dunstan, “Imaging concentric modulations in transverse modes of a vertical-cavity surface emitting laser using a scanning near-field optical microscope,” J. Appl. Phys. 101, 023103 (2007).
[Crossref]

2004 (2)

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

2002 (1)

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

2001 (1)

N. H. Lu, W. C. Lin, and D. P. Tsai, “Tapping-mode tuning-fork near-field scanning optical microscopy of low power semiconductor lasers,” J. Microsc. 202, 172–175 (2001).
[Crossref] [PubMed]

1999 (1)

1996 (1)

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

1979 (1)

H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Aeby, I.

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

Ariese, F.

Beach, J. D.

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

Bradford, W. C.

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

Chavan, D. C.

Chen, C. Y.

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

Christensen, D. H.

Collins, R. T.

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

Dunstan, P. R.

M. D. Holton, P. Rees, and P. R. Dunstan, “Imaging concentric modulations in transverse modes of a vertical-cavity surface emitting laser using a scanning near-field optical microscope,” J. Appl. Phys. 101, 023103 (2007).
[Crossref]

Ebeling, K. J.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

Galt, D.

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

Goldberg, B. B.

Helms, C.

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

Herrik, R.

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

Holton, M. D.

M. D. Holton, P. Rees, and P. R. Dunstan, “Imaging concentric modulations in transverse modes of a vertical-cavity surface emitting laser using a scanning near-field optical microscope,” J. Appl. Phys. 101, 023103 (2007).
[Crossref]

Hörsch, I.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

Iannuzzi, D.

Iga, K.-i.

H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Kim, S.

T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
[Crossref]

Kim, S.-B.

T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
[Crossref]

Kim, T.

T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
[Crossref]

T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
[Crossref]

Kisker, D. W.

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

Kitahara, C.

H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Knopp, K. J.

Kusche, R.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

Lin, C. S.

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

Lin, W. C.

N. H. Lu, W. C. Lin, and D. P. Tsai, “Tapping-mode tuning-fork near-field scanning optical microscopy of low power semiconductor lasers,” J. Microsc. 202, 172–175 (2001).
[Crossref] [PubMed]

Liu, W. C.

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

Lu, N. H.

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

N. H. Lu, W. C. Lin, and D. P. Tsai, “Tapping-mode tuning-fork near-field scanning optical microscopy of low power semiconductor lasers,” J. Microsc. 202, 172–175 (2001).
[Crossref] [PubMed]

Luo, W.

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

Mank, A. J. G.

Margheri, G.

Marti, O.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

Michalzik, R.

R. Michalzik, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers(Springer, 2013).

Pomeroy, J. M.

Rees, P.

M. D. Holton, P. Rees, and P. R. Dunstan, “Imaging concentric modulations in transverse modes of a vertical-cavity surface emitting laser using a scanning near-field optical microscope,” J. Appl. Phys. 101, 023103 (2007).
[Crossref]

Rhodes, G. V.

Soda, H.

H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Suematsu, Y.

H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Tiribilli, B.

Tsai, D. P.

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

N. H. Lu, W. C. Lin, and D. P. Tsai, “Tapping-mode tuning-fork near-field scanning optical microscopy of low power semiconductor lasers,” J. Microsc. 202, 172–175 (2001).
[Crossref] [PubMed]

Ueda, O.

O. Ueda, “On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation,” Jpn. J. Appl. Phys. 49, 090001 (2010).
[Crossref]

O. Ueda, Reliability and Degradation of III-V Optical Devices (Artech House Publishers, 1996).

van Hoorn, C. H.

Weidberg, A. R.

A. R. Weidberg, “VCSEL reliability in ATLAS and development of robust arrays,” J. Instrum. 7, C01098 (2012).
[Crossref]

Weigl, B.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

Yuen, A.

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

ETRI J. (1)

T. Kim, T. Kim, S. Kim, and S.-B. Kim, “Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge,” ETRI J. 30, 833–843 (2008).
[Crossref]

J. Appl. Phys. (2)

M. D. Holton, P. Rees, and P. R. Dunstan, “Imaging concentric modulations in transverse modes of a vertical-cavity surface emitting laser using a scanning near-field optical microscope,” J. Appl. Phys. 101, 023103 (2007).
[Crossref]

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[Crossref]

J. Instrum. (1)

A. R. Weidberg, “VCSEL reliability in ATLAS and development of robust arrays,” J. Instrum. 7, C01098 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (1)

N. H. Lu, W. C. Lin, and D. P. Tsai, “Tapping-mode tuning-fork near-field scanning optical microscopy of low power semiconductor lasers,” J. Microsc. 202, 172–175 (2001).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (2)

H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

O. Ueda, “On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation,” Jpn. J. Appl. Phys. 49, 090001 (2010).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

W. C. Bradford, J. D. Beach, R. T. Collins, D. Galt, and D. W. Kisker, “Characterization of VCSEL modal output using near-field scanning optical microscopy,” Proc. SPIE 4649, 77–86 (2002)
[Crossref]

C. Helms, I. Aeby, W. Luo, R. Herrik, and A. Yuen, “Reliability of oxide VCSELs at emcore,” Proc. SPIE 5364, 183–189 (2004).
[Crossref]

Scanning (1)

N. H. Lu, C. Y. Chen, C. S. Lin, W. C. Liu, and D. P. Tsai, “Imaging near-field transverse modes of vertical-cavity surface emitting lasers by near-field scanning optical microscopy,” Scanning 26, 43–46 (2004).

Other (2)

R. Michalzik, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers(Springer, 2013).

O. Ueda, Reliability and Degradation of III-V Optical Devices (Artech House Publishers, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Ferrule-top fabrication procedure. (a) boro-silicate ferrule with ridge (3 × 3 × 7 mm3), (b) ribbon glued to the ferrule, (c) ribbon cut into the right dimensions (300 × 2700 × 30 μm3), d) SNOM fiber anchored to the cantilever and cut using focused ion beam (FIB), (e) enlargement of (d), (f) scanning electron microscope image of the end of the cantilever with sharp tip and FIB cut; the insert shows the SNOM tip enlarged. Adapted from Ref. [14].
Fig. 2
Fig. 2 Schematic view of the experimental setup.
Fig. 3
Fig. 3 Topography image of a VCSEL (12 × 12 μm2, 256 × 256 px.). The square represents the area that is scanned during optical mapping.
Fig. 4
Fig. 4 Far-field total emission maps of a VCSEL operated at different currents. Images (a), (b) and (c) show the emission integrated over the whole bandwidth at operating currents of 0.1, 1 and 10 mA respectively. Frames (d), (e) and (f) show the corresponding emission spectra at that particular operating current.
Fig. 5
Fig. 5 Far-field emission maps of the mode profiles of a VCSEL operated at 10 mA. The intensity of a particular wavelength representing a transverse emission mode was mapped: (a) 849.50 nm, (b) 849.01 nm, (c) 848.67 nm.
Fig. 6
Fig. 6 Graph showing the decrease in width of the emission spectrum measured at 10 mA during a standard HALT test (RH = 90%, T = 120 °C, I = 12 mA during test); error bars represent the standard deviation (n = 5). *The distance between the 20dB (1% of the maximum intensity) values to the left and right of the peak is taken as the spectral width.
Fig. 7
Fig. 7 Near-field emission maps of the mode profiles of a VCSEL operated at 0.4 mA (not lasing). Image size: 10 × 10 μm2, 256 ×256 px. (a) total emission mapping. Images (b) to (e) represent mappings of a selected wavelength representing a particular transverse emission mode: (b) 848.40 nm, (c) 848.14 nm, (d) 847.74 nm, (e) 847.34 nm, (f) 846.94 nm.
Fig. 8
Fig. 8 Near-field emission maps of the mode profiles of a VCSEL operated at 10 mA, scan area: 10 × 10 μm2, 256 × 256 px. (a) total emission mapping. Images (b) to (e) represent mappings of a selected wavelength representing a particular transverse emission mode: (b) 850.73 nm, (c) 850.40 nm, (d) 849.67 nm, (e) 849.44 nm, (f) cross-section at the line in (b).
Fig. 9
Fig. 9 Topography image (a) and optical (c) mapping of a damaged VCSEL operated at 0.1 mA. Graphs (b) and (d) show the emission spectra at the locations indicated by the arrows. The spectral range between the lines was integrated to generate the optical mapping.
Fig. 10
Fig. 10 Near-field mappings of two emission modes; the arrows point at a location showing increasing laser damage from 0.06 μm2 to about 0.5 μm2. During the measurement the device was operated at 10 mA. Images (a) and (b) represent mappings recorded after operating the VCSEL 30 min. at 15 mA, images (c) and (d) represent mappings recorded after operating the VCSEL an additional 30 min. at 30 mA. Left images represent the intensity of the 849.67 nm emission; right images represent the intensity of the 849.20 nm emission (size: 10 × 10 μm2, 256 × 256 px.). The inset shows an enlargement of the damage (scale bar: 200 nm).

Metrics