Abstract

We report on a high-power, narrow spectral bandwidth 2.907 µm PPMgLN optical parametric oscillator (OPO) pumped by a 1.064 µm pulsed Nd:YAG MOPA laser source. Free-running operation of the OPO exhibits maximum average output power of 71.6 W at 2.907 µm with a slope efficiency of 26.7%. Broad 2.907 μm spectral bandwidth of the free-running OPO was suppressed from ~9 nm to less than 0.7 nm by using a VBG as one cavity mirror. The maximum average power was 51.7 W at 2907.55 nm for the spectrum-narrowed OPO, corresponding to a slope efficiency of 22.5%. Continuously tunable ranges of ~8 nm around 2.907 µm had been achieved via adjusting the temperatures of the VBG and PPMgLN accordingly.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities

Tinglun Xing, Li Wang, Shuwu Hu, Tingqing Cheng, Xianyou Wu, and Haihe Jiang
Opt. Express 25(25) 31810-31815 (2017)

High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating

Jiro Saikawa, Masaaki Fujii, Hideki Ishizuki, and Takunori Taira
Opt. Lett. 32(20) 2996-2998 (2007)

Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er:YAG laser

Jun Liu, Pinghua Tang, Yu Chen, Chujun Zhao, Deyuan Shen, Shuangchun Wen, and Dianyuan Fan
Opt. Express 23(16) 20812-20819 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
    [Crossref]
  2. G. Ren and Y. Huang, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrar. 36(1), 1–6 (2006).
  3. R. Tuttle, “Large aircraft infrared countermeasures system,” Aerospace Daily Defense Report 210, 6–7 (2004).
  4. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50(4), A1–A10 (2011).
    [Crossref] [PubMed]
  5. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett. 33(15), 1699–1701 (2008).
    [Crossref] [PubMed]
  6. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
    [Crossref] [PubMed]
  7. L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
    [Crossref]
  8. D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
    [Crossref] [PubMed]
  9. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009).
    [Crossref] [PubMed]
  10. H. R. Lee, J. R. Yu, N. Barnes, and Y. X. Bai, “An injection-seeded narrow linewidth singly resonant ZGP OPO,” ASSP (OSA), MC1 (2006).
  11. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device,” Opt. Lett. 31(21), 3149–3151 (2006).
    [Crossref] [PubMed]
  12. Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
    [Crossref]
  13. N. Hempler, G. Robertson, L. Bromley, C. Hamilton and G. Malcolm, “Compact, narrow linewidth, continuous-wave, intracavity optical parametric oscillator pumped by a semiconductor disk laser,” CLEO(OSA), CTuk2 (2011).
  14. S. Das, “Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator,” Infrared Phys. Technol. 69, 13–18 (2015).
    [Crossref]
  15. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18(6), 818–822 (2001).
    [Crossref]
  16. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(20), 2996–2998 (2007).
    [Crossref] [PubMed]
  17. P. Zeil, N. Thilmann, V. Pasiskevicius, and F. Laurell, “High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating,” Opt. Express 22(24), 29907–29913 (2014).
    [Crossref] [PubMed]
  18. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 µm source,” Opt. Lett. 31(12), 1878–1880 (2006).
    [Crossref] [PubMed]
  19. B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(22), 3278–3280 (2007).
    [Crossref] [PubMed]
  20. M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
    [Crossref] [PubMed]
  21. M. Vainio, C. Ozanam, V. Ulvila, and L. Halonen, “Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy,” Opt. Express 19(23), 22515–22527 (2011).
    [Crossref] [PubMed]
  22. G. He, J. Guo, Z. Jiao, and B. Wang, “High-efficiency near-degenerate PPMgLN optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 37(8), 1364–1366 (2012).
    [Crossref] [PubMed]

2015 (1)

S. Das, “Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator,” Infrared Phys. Technol. 69, 13–18 (2015).
[Crossref]

2014 (1)

2013 (1)

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

2012 (4)

2011 (2)

2009 (2)

2008 (1)

2007 (2)

2006 (3)

2004 (1)

R. Tuttle, “Large aircraft infrared countermeasures system,” Aerospace Daily Defense Report 210, 6–7 (2004).

2002 (1)

M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
[Crossref]

2001 (1)

Alam, S. U.

Bisson, S. E.

M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
[Crossref]

Canalias, C.

Caughey, T.

Chen, T.

Das, S.

S. Das, “Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator,” Infrared Phys. Technol. 69, 13–18 (2015).
[Crossref]

Fujii, M.

Ganikhanov, F.

Gao, J. R.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Guo, J.

Halonen, L.

Harren, F. J. M.

M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
[Crossref]

He, G.

Hekkert, S.

M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
[Crossref]

Henriksson, M.

Herpen, M.

M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
[Crossref]

Huang, Y.

G. Ren and Y. Huang, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrar. 36(1), 1–6 (2006).

Ishizuki, H.

Jacobsson, B.

Jiang, Z. F.

L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
[Crossref]

Jiao, Z.

Laurell, F.

Li, D.

Li, D. M.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Li, X.

L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
[Crossref]

Lin, D.

Liu, L.

L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
[Crossref]

Miyazaki, M.

Ozanam, C.

Pasiskevicius, V.

Peltola, J.

Peng, Y.

Peng, Y. F.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Ren, G.

G. Ren and Y. Huang, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrar. 36(1), 1–6 (2006).

Richardson, D. J.

Saikawa, J.

Shen, Y.

Siltanen, M.

Sjöqvist, L.

Taira, T.

Thilmann, N.

Tiihonen, M.

Tuttle, R.

R. Tuttle, “Large aircraft infrared countermeasures system,” Aerospace Daily Defense Report 210, 6–7 (2004).

Ulvila, V.

Vainio, M.

Vodopyanov, K. L.

Wang, B.

Wang, W.

Wang, W. M.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Wei, X.

Wei, X. B.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Wu, B.

Xiao, H.

L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
[Crossref]

Xie, G.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Xu, X. J.

L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
[Crossref]

Zeil, P.

Aerospace Daily Defense Report (1)

R. Tuttle, “Large aircraft infrared countermeasures system,” Aerospace Daily Defense Report 210, 6–7 (2004).

Appl. Opt. (1)

Infrared Phys. Technol. (1)

S. Das, “Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator,” Infrared Phys. Technol. 69, 13–18 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Infrar. (1)

G. Ren and Y. Huang, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrar. 36(1), 1–6 (2006).

Laser Phys. (2)

L. Liu, X. Li, H. Xiao, X. J. Xu, and Z. F. Jiang, “12 W mid-infrared output, singly resonant, continuous-wave optical parametric oscillator pumped by a Yb3+-doped fiber amplifier,” Laser Phys. 22(1), 115–119 (2012).
[Crossref]

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

G. He, J. Guo, Z. Jiao, and B. Wang, “High-efficiency near-degenerate PPMgLN optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 37(8), 1364–1366 (2012).
[Crossref] [PubMed]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 µm source,” Opt. Lett. 31(12), 1878–1880 (2006).
[Crossref] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device,” Opt. Lett. 31(21), 3149–3151 (2006).
[Crossref] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(20), 2996–2998 (2007).
[Crossref] [PubMed]

B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(22), 3278–3280 (2007).
[Crossref] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett. 33(15), 1699–1701 (2008).
[Crossref] [PubMed]

Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Herpen, S. Hekkert, S. E. Bisson, and F. J. M. Harren, “The development of powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection,” Proc. SPIE 4762, 16–21 (2002).
[Crossref]

Other (2)

H. R. Lee, J. R. Yu, N. Barnes, and Y. X. Bai, “An injection-seeded narrow linewidth singly resonant ZGP OPO,” ASSP (OSA), MC1 (2006).

N. Hempler, G. Robertson, L. Bromley, C. Hamilton and G. Malcolm, “Compact, narrow linewidth, continuous-wave, intracavity optical parametric oscillator pumped by a semiconductor disk laser,” CLEO(OSA), CTuk2 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of the narrow-bandwidth mid-infrared PPMgLN OPO, a VBG with reflectance bandwidth <0.08 nm at 1678.9 nm was used as a cavity mirror to narrow the spectral bandwidth of signal laser.
Fig. 2
Fig. 2 Mid-infrared wavelength idler laser output power versus pump power at free running operation without VBG () and wavelength-narrowed operation with VBG ().
Fig. 3
Fig. 3 The spectrum of (a) the pump laser; (b) the OPO signal laser (with VBG as a cavity mirror); (c) the OPO idler laser (with OM as a cavity mirror); (d) the OPO idler laser (with VBG as a cavity mirror).
Fig. 4
Fig. 4 Near-field intensity distribution of 2.907 µm laser beam.

Metrics