Abstract

A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A full-duplex CATV/wireless-over-fiber lightwave transmission system

Chung-Yi Li, Hai-Han Lu, Cheng-Ling Ying, Chun-Jen Cheng, Che-Yu Lin, Zhi-Wei Wan, and Jian-Hua Chen
Opt. Express 23(7) 9221-9232 (2015)

Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme

Hai-Han Lu, Chung-Yi Li, Hwan-Wei Chen, Chun-Ming Ho, Ming-Te Cheng, Sheng-Jhe Huang, Zih-Yi Yang, and Xin-Yao Lin
Opt. Express 24(15) 17250-17258 (2016)

Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands

Hai-Han Lu, Hsiao-Wen Wu, Chung-Yi Li, Chun-Ming Ho, Zih-Yi Yang, Ming-Te Cheng, and Chang-Kai Lu
Opt. Express 25(9) 9743-9754 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Effenberger and X. Liu, “Power-efficient method for IM-DD optical transmission of multiple OFDM signals,” Opt. Express 23(10), 13571–13579 (2015).
    [Crossref] [PubMed]
  2. C. Tang, X. Li, F. Li, J. Zhang, and J. Xiao, “A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band,” in Optical Fiber Communications Conference (IEEE, 2014), paper W2A.4.
    [Crossref]
  3. L. M. Pessoa, D. Coelho, H. M. Salgado, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
    [Crossref] [PubMed]
  4. M. Zhu, L. Zhang, J. Wang, C. Liu, L. Cheng, and G. K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” J. Lightwave Technol. 31(23), 3614–3620 (2013).
    [Crossref]
  5. C. Y. Li, H. H. Lu, C. L. Ying, C. J. Cheng, C. Y. Lin, Z. W. Wan, and J. H. Chen, “A full-duplex CATV/wireless-over-fiber lightwave transmission system,” Opt. Express 23(7), 9221–9232 (2015).
    [Crossref] [PubMed]
  6. C. L. Ying, H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, and P. C. Peng, “A bidirectional hybrid lightwave transport system based on fiber-IVLLC and fiber-VLLC convergences,” IEEE Photonics J. 7(4), 7201611 (2015).
    [Crossref]
  7. C. Y. Li, H. H. Lu, C. H. Chang, C. Y. Lin, P. Y. Wu, J. R. Zheng, and C. R. Lin, “Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system,” Opt. Express 22(13), 16188–16196 (2014).
    [Crossref] [PubMed]
  8. C. Y. Li, H. H. Lu, C. L. Ying, J. R. Zheng, C. Y. Lin, and Z. W. Wan, “Two-way fiber-wireless convergence systems based on two-stage injection-locked VCSELs transmitter and optical interleaver,” Opt. Express 23(4), 5244–5252 (2015).
    [Crossref] [PubMed]
  9. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
    [Crossref]
  10. D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).
  11. K. Kitayama, T. Kuri, K. Onohara, T. Kamisaka, and K. Murashima, “Dispersion effects of FBG filter and optical SSB filtering in DWDM millimeter-wave fiber-radio systems,” J. Lightwave Technol. 20(8), 1397–1407 (2002).
    [Crossref]
  12. G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
    [Crossref]

2015 (4)

2014 (2)

2013 (1)

2006 (1)

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

2002 (1)

1998 (1)

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

1996 (1)

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Chang, C. H.

Chang, G. K.

Chen, J. H.

Chen, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Cheng, C. J.

Cheng, L.

Chu, C. A.

C. L. Ying, H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, and P. C. Peng, “A bidirectional hybrid lightwave transport system based on fiber-IVLLC and fiber-VLLC convergences,” IEEE Photonics J. 7(4), 7201611 (2015).
[Crossref]

Coelho, D.

Effenberger, F.

Fukasawa, Y.

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Jia, Z.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Kakuta, Y.

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Kamisaka, T.

Kitayama, K.

Kung Chang, G.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Kuri, T.

Li, C. Y.

Lin, C. R.

Lin, C. Y.

Liu, C.

Liu, X.

Lu, H. H.

Lu, T. C.

C. L. Ying, H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, and P. C. Peng, “A bidirectional hybrid lightwave transport system based on fiber-IVLLC and fiber-VLLC convergences,” IEEE Photonics J. 7(4), 7201611 (2015).
[Crossref]

Murashima, K.

Namara, D. M.

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Novak, D.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

Onohara, K.

Peng, P. C.

C. L. Ying, H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, and P. C. Peng, “A bidirectional hybrid lightwave transport system based on fiber-IVLLC and fiber-VLLC convergences,” IEEE Photonics J. 7(4), 7201611 (2015).
[Crossref]

Pessoa, L. M.

Salgado, H. M.

Shirakawa, Y.

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Smith, G. H.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

Wakabayashi, Y.

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Wan, Z. W.

Wang, J.

Wang, T.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Wu, P. Y.

Xu, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Ying, C. L.

Yu, J.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Zhang, L.

Zheng, J. R.

Zhu, M.

IEEE Photonics J. (1)

C. L. Ying, H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, and P. C. Peng, “A bidirectional hybrid lightwave transport system based on fiber-IVLLC and fiber-VLLC convergences,” IEEE Photonics J. 7(4), 7201611 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Kung Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

J. Lightwave Technol. (2)

NCTA Technical Papers (1)

D. M. Namara, Y. Fukasawa, Y. Wakabayashi, Y. Shirakawa, and Y. Kakuta, “750 MHz power doubler and push-pull CATV hybrid modules using Gallium Arsenide,” NCTA Technical Papers 1996, 19–26 (1996).

Opt. Express (5)

Other (1)

C. Tang, X. Li, F. Li, J. Zhang, and J. Xiao, “A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band,” in Optical Fiber Communications Conference (IEEE, 2014), paper W2A.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The configuration of the proposed hybrid CATV/MMW/BB lightwave transmission systems based on fiber-wired/fiber-wireless/fiber-VLLC integrations.
Fig. 2
Fig. 2 A schematic diagram of the push-pull scheme.
Fig. 3
Fig. 3 The measured CNR/CSO/CTB values under NTSC channel number with and without a push-pull scheme.
Fig. 4
Fig. 4 The measured BER curves of 10 Gbps/50 GHz MMW signal for BTB, over a 40-km SMF transport, as well as over a 40-km SMF and a 10-m RF wireless transport scenarios.
Fig. 5
Fig. 5 The measured BER curves of 20 Gbps/100 GHz MMW signal for BTB, over a 40-km SMF transport, as well as over a 40-km SMF and a 10-m RF wireless transport scenarios.
Fig. 6
Fig. 6 The measured BER curves of 5 Gbps data stream for BTB, over a 40-km SMF transport, as well as over a 40-km SMF and a 10-m free-space transport scenarios.

Tables (1)

Tables Icon

Table 1 The power penalties at different RF/optical wireless distances (up to 10 m).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G o = k 1 G i + k 3 G i 3 + k 5 G i 5
P o = n 1 P i + n 2 P i 2 + n 3 P i 3
G o = k 1 ( n 1 P i + n 2 P i 2 + n 3 P i 3 )+ k 3 ( n 1 P i + n 2 P i 2 + n 3 P i 3 ) 3 + k 5 ( n 1 P i + n 2 P i 2 + n 3 P i 3 ) 5
G o =( k 1 n 1 ) P i +( k 1 n 2 ) P i 2 +( k 1 n 3 + k 3 n 1 3 ) P i 3
k 1 = k 3 ( n 1 3 / n 3 )
G o =( k 1 n 1 ) P i +( k 1 n 2 ) P i 2

Metrics