Abstract

A novel hybrid single-polarization (SP) fiber ring resonator is demonstrated by using a polarization-maintaining coupler formed by splicing a section of SP fiber into the resonator. The SP fiber selectively eliminates the unwanted resonance by introducing high loss for the unwanted eigenstates of polarization in the resonator. The calculated result shows that this hybrid SP resonator is a good candidate for a tactical-grade performance gyro with a high environmental temperature stability. The experiment shows that the desired resonance in the resonator can keep an excellent stability in a wide temperature range, thus the temperature-dependent polarization-fluctuation drift in the resonant fiber optic gyro is sufficiently suppressed. As a result, a random walk coefficient of 0.08°/√h and a typical bias stability below 0.3°/h for an integration time of 300 s have been carried out.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator

Xuhui Yu, Huilian Ma, and Zhonghe Jin
Opt. Express 21(1) 358-369 (2013)

In-line polarizer used in all-0°-splice resonator fiber-optic gyro

Huilan Liu, Wei Wang, Junjie Wang, Lishuang Feng, and Yinzhou Zhi
Appl. Opt. 52(32) 7821-7825 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
    [Crossref] [PubMed]
  2. L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
    [Crossref]
  3. L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 1795, 94–104 (1993).
    [Crossref]
  4. K. Takiguchi and K. Hotate, “Evaluation of the output error in an optical passive ring-resonator gyro with a 90 degrees polarization-axis rotation in the polarization-maintaining fiber resonator,” IEEE Photon. Technol. Lett. 3(1), 88–90 (1991).
    [Crossref]
  5. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 degrees polarization-axis rotated splices,” Opt. Express 18(2), 1677–1683 (2010).
    [Crossref] [PubMed]
  6. H. Liu, W. Wang, J. Wang, L. Feng, and Y. Zhi, “In-line polarizer used in all-0°-splice resonator fiber-optic gyro,” Appl. Opt. 52(32), 7821–7825 (2013).
    [Crossref] [PubMed]
  7. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25(15), 2606–2612 (1986).
    [Crossref] [PubMed]
  8. G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1990).
    [Crossref]
  9. K. Takiguchi and K. Hotate, “Reduction of a polarization-fluctuation-induced error in an optical passive ring-resonator gyro bv using: a single-polarization optical fiber,” J. Lightwave Technol. 11(10), 1687–1693 (1993).
    [Crossref]
  10. R. P. Dahlgren and R. E. Sutherland, “Single-polarization fiber optic resonator for gyro applications,” Proc. SPIE 1585, 128–135 (1992).
    [Crossref]
  11. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37(16), 3342–3344 (2012).
    [Crossref] [PubMed]
  12. X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator,” Opt. Express 21(1), 358–369 (2013).
    [Crossref] [PubMed]
  13. X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31(3), 366–374 (2013).
    [Crossref]
  14. H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguidering resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
    [Crossref]
  15. H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
    [Crossref] [PubMed]
  16. Z. Jin, X. Yu, and H. Ma, “Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation,” Opt. Express 21(22), 26578–26588 (2013).
    [Crossref] [PubMed]
  17. H. Ma, X. Li, G. Zhang, and Z. Jin, “Reduction of optical Kerr-effect induced error in a resonant micro-optic gyro by light-intensity feedback technique,” Appl. Opt. 53(16), 3465–3472 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (4)

2012 (2)

2010 (1)

2008 (1)

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguidering resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

1993 (2)

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 1795, 94–104 (1993).
[Crossref]

K. Takiguchi and K. Hotate, “Reduction of a polarization-fluctuation-induced error in an optical passive ring-resonator gyro bv using: a single-polarization optical fiber,” J. Lightwave Technol. 11(10), 1687–1693 (1993).
[Crossref]

1992 (2)

R. P. Dahlgren and R. E. Sutherland, “Single-polarization fiber optic resonator for gyro applications,” Proc. SPIE 1585, 128–135 (1992).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[Crossref]

1991 (1)

K. Takiguchi and K. Hotate, “Evaluation of the output error in an optical passive ring-resonator gyro with a 90 degrees polarization-axis rotation in the polarization-maintaining fiber resonator,” IEEE Photon. Technol. Lett. 3(1), 88–90 (1991).
[Crossref]

1990 (1)

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1990).
[Crossref]

1986 (1)

1983 (1)

Chen, Z.

Dahlgren, R. P.

R. P. Dahlgren and R. E. Sutherland, “Single-polarization fiber optic resonator for gyro applications,” Proc. SPIE 1585, 128–135 (1992).
[Crossref]

Ezekiel, S.

Feng, L.

He, Z.

Higashiguchi, M.

Hotate, K.

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31(3), 366–374 (2013).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 degrees polarization-axis rotated splices,” Opt. Express 18(2), 1677–1683 (2010).
[Crossref] [PubMed]

K. Takiguchi and K. Hotate, “Reduction of a polarization-fluctuation-induced error in an optical passive ring-resonator gyro bv using: a single-polarization optical fiber,” J. Lightwave Technol. 11(10), 1687–1693 (1993).
[Crossref]

K. Takiguchi and K. Hotate, “Evaluation of the output error in an optical passive ring-resonator gyro with a 90 degrees polarization-axis rotation in the polarization-maintaining fiber resonator,” IEEE Photon. Technol. Lett. 3(1), 88–90 (1991).
[Crossref]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25(15), 2606–2612 (1986).
[Crossref] [PubMed]

Iwatsuki, K.

Jin, Z.

Li, X.

Liu, H.

Ma, H.

Meyer, R. E.

Rouse, G. F.

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1990).
[Crossref]

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 1795, 94–104 (1993).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[Crossref]

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1990).
[Crossref]

Smith, R. B.

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1990).
[Crossref]

Stowe, D. W.

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 1795, 94–104 (1993).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[Crossref]

Sutherland, R. E.

R. P. Dahlgren and R. E. Sutherland, “Single-polarization fiber optic resonator for gyro applications,” Proc. SPIE 1585, 128–135 (1992).
[Crossref]

Takiguchi, K.

K. Takiguchi and K. Hotate, “Reduction of a polarization-fluctuation-induced error in an optical passive ring-resonator gyro bv using: a single-polarization optical fiber,” J. Lightwave Technol. 11(10), 1687–1693 (1993).
[Crossref]

K. Takiguchi and K. Hotate, “Evaluation of the output error in an optical passive ring-resonator gyro with a 90 degrees polarization-axis rotation in the polarization-maintaining fiber resonator,” IEEE Photon. Technol. Lett. 3(1), 88–90 (1991).
[Crossref]

Tekippe, V. J.

Wang, J.

Wang, S.

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguidering resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

Wang, W.

Wang, X.

Yang, Z.

Yu, X.

Zhang, G.

Zhi, Y.

Appl. Opt. (4)

IEEE Photon. Technol. Lett. (1)

K. Takiguchi and K. Hotate, “Evaluation of the output error in an optical passive ring-resonator gyro with a 90 degrees polarization-axis rotation in the polarization-maintaining fiber resonator,” IEEE Photon. Technol. Lett. 3(1), 88–90 (1991).
[Crossref]

J. Lightwave Technol. (2)

K. Takiguchi and K. Hotate, “Reduction of a polarization-fluctuation-induced error in an optical passive ring-resonator gyro bv using: a single-polarization optical fiber,” J. Lightwave Technol. 11(10), 1687–1693 (1993).
[Crossref]

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31(3), 366–374 (2013).
[Crossref]

Opt. Commun. (1)

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguidering resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (4)

R. P. Dahlgren and R. E. Sutherland, “Single-polarization fiber optic resonator for gyro applications,” Proc. SPIE 1585, 128–135 (1992).
[Crossref]

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1990).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 1795, 94–104 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the hybrid SP fiber ring resonator.
Fig. 2
Fig. 2 Relationships between resonator finesse, shot noise limited sensitivity and total length of SP fibers. D = 12cm, λ = 1550nm, L = 18.21m, e = 1.6 × 10−19C, τ = 1s, Pin = 1.3mW, RD = 0.65V/mW.
Fig. 3
Fig. 3 Relationship between the polarization-fluctuation induced error and the total PER of SP fibers.
Fig. 4
Fig. 4 Polarization-fluctuation induced errors as a function of temperature change.
Fig. 5
Fig. 5 Measured resonances correspond to temperatures of 10°C, 20°C, 30°C, and 40°C respectively.
Fig. 6
Fig. 6 Basic configuration of the RFOG.
Fig. 7
Fig. 7 Sinusoidal rotation response of the closed-loop RFOG.
Fig. 8
Fig. 8 Closed-loop output of the rotation rate (turntable stationary). (a) RFOG rate output versus running time for 1200 seconds. (b) Rate uncertainty versus integration time.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ω min 2 λc LFD e R D P PD τ
F=π/arccos( 2TR 1+ T 2 R 2 )
T= (1 k 2 )(1 a Lb )(1 k 1 ) R= (1 a c 1 )(1 a L a )(1 a c 2 )
P PD = P in k 1 k 2 R 2 (1TR) 2
Δ f p Γ 2 4 a 1 2 | v 1 | 2 [ I 2 f +2real( I 3 f )]

Metrics