Abstract

We present a fiber-coupled pump-probe system with a sub-50 fs time resolution and a nanosecond time window, based on high-speed asynchronous optical sampling. By use of a transmission grism pulse compressor, we achieve pump pulses with a pulse duration of 42 fs, an average power of 300 mW and a peak power exceeding 5 kW at a pulse repetition rate of 1 GHz after 6 m of optical fiber. With this system we demonstrate thickness mapping of soft X-ray mirrors at a sub-nm thickness resolution on a cm2 scan area. In addition, terahertz field generation with resolved spectral components of up to 3.5 THz at a GHz frequency resolution is demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed asynchronous optical sampling with sub-50fs time resolution

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels
Opt. Express 18(6) 5974-5983 (2010)

Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm

Meri Kalashyan, Claire Lefort, Lluís Martínez-León, Tigran Mansuryan, Levon Mouradian, and Frederic Louradour
Opt. Express 20(23) 25624-25635 (2012)

Sub-30-fs pulse compression and pulse shaping at the output of a 2-m-long optical fiber in the near-infrared range

Claire Lefort, Meri Kalashyan, Guillaume Ducourthial, Tigran Mansuryan, Rodney P. O’Connor, and Frederic Louradour
J. Opt. Soc. Am. B 31(10) 2317-2324 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
    [Crossref] [PubMed]
  2. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528–5534 (2005).
    [Crossref] [PubMed]
  3. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28, 1552–1554 (2003).
    [Crossref] [PubMed]
  4. C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
    [Crossref] [PubMed]
  5. H. Wang, T. B. Huff, and J. Cheng, “Coherent anti-stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
    [Crossref] [PubMed]
  6. S. Han, H. Ko, N. Kim, H. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36, 3094–3096 (2011).
    [Crossref] [PubMed]
  7. D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett. 35, 3799–3801 (2010).
    [Crossref] [PubMed]
  8. T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
    [Crossref] [PubMed]
  9. F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
    [Crossref] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  11. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
    [Crossref]
  12. T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett. 36, 442–444 (2011).
    [Crossref] [PubMed]
  13. N. K. T. Photonics, “http://www.nktphotonics.com/fiber,”.
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  15. S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A 82, 025801 (2010).
    [Crossref]
  16. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  17. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004).
    [Crossref] [PubMed]
  18. F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126–7131 (2007).
    [Crossref]
  19. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express 17, 1240–1247 (2009).
    [Crossref] [PubMed]
  20. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29, 1414–1415(1) (1993).
    [Crossref]
  21. S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14, 661–665 (1997).
    [Crossref]
  22. T. H. Dou, R. Tautz, X. Gu, G. Marcus, T. Feurer, F. Krausz, and L. Veisz, “Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave,” Opt. Express 18, 27900–27909 (2010).
    [Crossref]
  23. J. J. Field, C. G. Durfee, J. A. Squier, and S. Kane, “Quartic-phase-limited grism-based ultrashort pulse shaper,” Opt. Lett. 32, 3101–3103 (2007).
    [Crossref] [PubMed]
  24. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31, 3363–3365 (2006).
    [Crossref] [PubMed]
  25. M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20, 25624–25635 (2012).
    [Crossref] [PubMed]
  26. C. Lefort, M. Kalashyan, G. Ducourthial, T. Mansuryan, R. P. O’Connor, and F. Louradour, “Sub-30-fs pulse compression and pulse shaping at the output of a 2-m-long optical fiber in the near-infrared range,” J. Opt. Soc. Am. B 31, 2317–2324 (2014).
    [Crossref]
  27. N. Forget, V. Crozatier, and P. Tournois, “Transmission bragg-grating grisms for pulse compression,” Appl. Phys. B 109, 121–125 (2012).
    [Crossref]
  28. A. Ricci, A. Jullien, N. Forget, V. Crozatier, P. Tournois, and R. Lopez-Martens, “Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher,” Opt. Lett. 37, 1196–1198 (2012).
    [Crossref] [PubMed]
  29. O. Sinkin, R. Holzlohner, J. Zweck, and C. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003).
    [Crossref]
  30. M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
    [Crossref]
  31. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
    [Crossref]
  32. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
    [Crossref] [PubMed]
  33. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
    [Crossref] [PubMed]
  34. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
    [Crossref]
  35. K. N. Stoev and K. Sakurai, “Review on grazing incidence x-ray spectrometry and reflectometry,” Spectrochim. Acta B 54, 41–82 (1999).
    [Crossref]
  36. E. Spiller, S. L. Baker, P. B. Mirkarimi, V. Sperry, E. M. Gullikson, and D. G. Stearns, “High-performance Mo-Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition,” Appl. Opt. 42, 4049–4058 (2003).
    [Crossref] [PubMed]
  37. W. Kuo, E. Pan, and N. Pu, “A study on the transmission of picosecond ultrasonic waves in Si/Mo superlattices,” J. Appl. Phys. 103, 093533 (2008).
    [Crossref]
  38. A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
    [Crossref]
  39. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
    [Crossref]
  40. N. Pu, “Ultrafast excitation and detection of acoustic phonon modes in superlattices,” Phys. Rev. B 72, 115428 (2005).
    [Crossref]
  41. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007).
    [Crossref]
  42. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44, 6849–6856 (2005).
    [Crossref] [PubMed]
  43. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
    [Crossref]
  44. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
    [Crossref]
  45. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
    [Crossref]
  46. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
    [Crossref]

2014 (1)

2012 (4)

A. Ricci, A. Jullien, N. Forget, V. Crozatier, P. Tournois, and R. Lopez-Martens, “Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher,” Opt. Lett. 37, 1196–1198 (2012).
[Crossref] [PubMed]

M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20, 25624–25635 (2012).
[Crossref] [PubMed]

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

N. Forget, V. Crozatier, and P. Tournois, “Transmission bragg-grating grisms for pulse compression,” Appl. Phys. B 109, 121–125 (2012).
[Crossref]

2011 (4)

2010 (5)

2009 (3)

2008 (3)

W. Kuo, E. Pan, and N. Pu, “A study on the transmission of picosecond ultrasonic waves in Si/Mo superlattices,” J. Appl. Phys. 103, 093533 (2008).
[Crossref]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (4)

H. Wang, T. B. Huff, and J. Cheng, “Coherent anti-stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
[Crossref] [PubMed]

E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31, 3363–3365 (2006).
[Crossref] [PubMed]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (4)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[Crossref]

L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528–5534 (2005).
[Crossref] [PubMed]

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44, 6849–6856 (2005).
[Crossref] [PubMed]

N. Pu, “Ultrafast excitation and detection of acoustic phonon modes in superlattices,” Phys. Rev. B 72, 115428 (2005).
[Crossref]

2004 (1)

2003 (3)

2000 (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

1999 (2)

K. N. Stoev and K. Sakurai, “Review on grazing incidence x-ray spectrometry and reflectometry,” Spectrochim. Acta B 54, 41–82 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

1998 (1)

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[Crossref]

1997 (1)

1993 (1)

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

1986 (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Araki, T.

Attwood, D.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[Crossref]

Baker, S. L.

Bartels, A.

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Bastian, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Beigang, R.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[Crossref] [PubMed]

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Ben-Yakar, A.

Bethge, J.

T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett. 36, 442–444 (2011).
[Crossref] [PubMed]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Bird, D.

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Brown, C. M.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Campbell, S.

Chang, W.

Chen, P.

Cheng, J.

Cheng, Z.

Chun, H. S.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cook, K.

Crozatier, V.

Dekorsy, T.

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Dou, T. H.

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[Crossref]

Ducourthial, G.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Durfee, C.

Durfee, C. G.

Durr, N. J.

Ellrich, F.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[Crossref] [PubMed]

Feurer, T.

Field, J. J.

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Forget, N.

Fu, L.

Fukunaga, K.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Gan, X.

Gaudiosi, D. M.

Gebs, R.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Gérôme, F.

Gibson, E. A.

Grahn, H. T.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[Crossref]

Gu, M.

Gu, X.

Gullikson, E. M.

Gwyn, C. W.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[Crossref]

Han, S.

Hasek, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Hayashi, S.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[Crossref]

Herrmann, J.

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A 82, 025801 (2010).
[Crossref]

Hochrein, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Hofer, M.

Holzlohner, R.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

Hosako, I.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Hoy, C. L.

Hudert, F.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
[Crossref]

Huff, R.

Huff, T. B.

Husakou, A.

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A 82, 025801 (2010).
[Crossref]

Ihara, A.

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Im, S. J.

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A 82, 025801 (2010).
[Crossref]

Inaba, H.

Ito, T.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

Janke, C.

Jeon, M. Y.

Jimenez, R.

Joly, N. Y.

Jonuscheit, J.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[Crossref] [PubMed]

Jullien, A.

Kalashyan, M.

Kane, S.

Kapteyn, H. C.

Kawamoto, K.

Kim, N.

Klatt, G.

Knight, J.

Knight, J. C.

Ko, H.

Koch, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Köhler, K.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Krausz, F.

Kretschmer, K.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Krumbholz, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Kuo, W.

W. Kuo, E. Pan, and N. Pu, “A study on the transmission of picosecond ultrasonic waves in Si/Mo superlattices,” J. Appl. Phys. 103, 093533 (2008).
[Crossref]

Kurz, H.

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Le, T.

Lee, C. W.

Lee, D.

Leem, Y. A.

Lefort, C.

Lopez-Martens, R.

Louradour, F.

Luan, F.

Mangan, B.

Mansuryan, T.

Marcus, G.

Maris, H. J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[Crossref]

Martínez-León, L.

Menyuk, C.

Mikulics, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Minoshima, K.

Mirkarimi, P. B.

Mohanan, S.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Molter, D.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[Crossref] [PubMed]

Morris, C. M.

Mouradian, L.

Noh, S. K.

Nold, J.

Nose, M.

O’Connor, R. P.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

Ogawa, Y.

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

Okazaki, S.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

Ouzounov, D. G.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Pan, E.

W. Kuo, E. Pan, and N. Pu, “A study on the transmission of picosecond ultrasonic waves in Si/Mo superlattices,” J. Appl. Phys. 103, 093533 (2008).
[Crossref]

Park, K. H.

Pavlova, I.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Photonics, N. K. T.

N. K. T. Photonics, “http://www.nktphotonics.com/fiber,”.

Piyawattanametha, W.

Pu, N.

W. Kuo, E. Pan, and N. Pu, “A study on the transmission of picosecond ultrasonic waves in Si/Mo superlattices,” J. Appl. Phys. 103, 093533 (2008).
[Crossref]

N. Pu, “Ultrafast excitation and detection of acoustic phonon modes in superlattices,” Phys. Rev. B 72, 115428 (2005).
[Crossref]

Ra, H.

Reid, D.

Ricci, A.

Rivera, D. R.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Roberts, P.

Russell, P.

Russell, P. St. J.

Ryu, H.

Sakurai, K.

K. N. Stoev and K. Sakurai, “Review on grazing incidence x-ray spectrometry and reflectometry,” Spectrochim. Acta B 54, 41–82 (1999).
[Crossref]

Sawanaka, K.

Schmidt, C.

Sherwin, M. S.

Sinkin, O.

Skibina, J.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Solgaard, O.

Sperry, V.

Spiller, E.

Squier, J.

Squier, J. A.

Stearns, D. G.

Stehr, D.

Steinmeyer, G.

T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett. 36, 442–444 (2011).
[Crossref] [PubMed]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Stingl, A.

Stoev, K. N.

K. N. Stoev and K. Sakurai, “Review on grazing incidence x-ray spectrometry and reflectometry,” Spectrochim. Acta B 54, 41–82 (1999).
[Crossref]

Stulen, R.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[Crossref]

Sweeney, D.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[Crossref]

Tauc, J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[Crossref]

Tautz, R.

Tempea, G.

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007).
[Crossref]

Tournois, P.

N. Forget, V. Crozatier, and P. Tournois, “Transmission bragg-grating grisms for pulse compression,” Appl. Phys. B 109, 121–125 (2012).
[Crossref]

A. Ricci, A. Jullien, N. Forget, V. Crozatier, P. Tournois, and R. Lopez-Martens, “Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher,” Opt. Lett. 37, 1196–1198 (2012).
[Crossref] [PubMed]

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29, 1414–1415(1) (1993).
[Crossref]

Travers, J. C.

Veisz, L.

Vieweg, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Wadsworth, W. J.

Wang, H.

Webb, W. W.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

Weinland, T.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[Crossref] [PubMed]

Williams, D.

Williams, W. O.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[Crossref]

Xiao, D.

Xu, C.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

Yasuda, T.

Yasui, T.

Yokoyama, S.

Zweck, J.

Appl. Opt. (2)

Appl. Phys. B (1)

N. Forget, V. Crozatier, and P. Tournois, “Transmission bragg-grating grisms for pulse compression,” Appl. Phys. B 109, 121–125 (2012).
[Crossref]

Appl. Phys. Lett. (3)

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88, 041117 (2006).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[Crossref]

IEICE Electron. Express (1)

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4, 258–263 (2007).
[Crossref]

J. Appl. Phys. (1)

W. Kuo, E. Pan, and N. Pu, “A study on the transmission of picosecond ultrasonic waves in Si/Mo superlattices,” J. Appl. Phys. 103, 093533 (2008).
[Crossref]

J. Biomed. Opt. (1)

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt. 17, 0405051(2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

J. Vac. Sci. Technol. B (1)

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[Crossref]

Nature (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000).
[Crossref] [PubMed]

Nature Photon. (2)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nature Photon. 2, 679–683 (2008).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007).
[Crossref]

Opt. Express (9)

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
[Crossref] [PubMed]

L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528–5534 (2005).
[Crossref] [PubMed]

T. H. Dou, R. Tautz, X. Gu, G. Marcus, T. Feurer, F. Krausz, and L. Veisz, “Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave,” Opt. Express 18, 27900–27909 (2010).
[Crossref]

F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004).
[Crossref] [PubMed]

F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126–7131 (2007).
[Crossref]

T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express 17, 1240–1247 (2009).
[Crossref] [PubMed]

M. Kalashyan, C. Lefort, L. Martínez-León, T. Mansuryan, L. Mouradian, and F. Louradour, “Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm,” Opt. Express 20, 25624–25635 (2012).
[Crossref] [PubMed]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

Opt. Lett. (9)

A. Ricci, A. Jullien, N. Forget, V. Crozatier, P. Tournois, and R. Lopez-Martens, “Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher,” Opt. Lett. 37, 1196–1198 (2012).
[Crossref] [PubMed]

J. J. Field, C. G. Durfee, J. A. Squier, and S. Kane, “Quartic-phase-limited grism-based ultrashort pulse shaper,” Opt. Lett. 32, 3101–3103 (2007).
[Crossref] [PubMed]

E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31, 3363–3365 (2006).
[Crossref] [PubMed]

D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28, 1552–1554 (2003).
[Crossref] [PubMed]

T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett. 36, 442–444 (2011).
[Crossref] [PubMed]

H. Wang, T. B. Huff, and J. Cheng, “Coherent anti-stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
[Crossref] [PubMed]

S. Han, H. Ko, N. Kim, H. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36, 3094–3096 (2011).
[Crossref] [PubMed]

D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett. 35, 3799–3801 (2010).
[Crossref] [PubMed]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref] [PubMed]

Phys. Rev. A (1)

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A 82, 025801 (2010).
[Crossref]

Phys. Rev. B (2)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[Crossref]

N. Pu, “Ultrafast excitation and detection of acoustic phonon modes in superlattices,” Phys. Rev. B 72, 115428 (2005).
[Crossref]

Phys. Rev. Lett. (1)

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Polym. Test. (1)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[Crossref] [PubMed]

Spectrochim. Acta B (1)

K. N. Stoev and K. Sakurai, “Review on grazing incidence x-ray spectrometry and reflectometry,” Spectrochim. Acta B 54, 41–82 (1999).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

N. K. T. Photonics, “http://www.nktphotonics.com/fiber,”.

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29, 1414–1415(1) (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layout of the compact grism compressor. VPH: volume phase holographic transmission grating, P: prism. The whole compressor has a 50 × 40 mm2 footprint.
Fig. 2
Fig. 2 Numerical and experimental results of pulse propagation in 6 m of fiber with an average power of 300 mW. Numerical results are plotted as dashed lines, experimental data as solid lines. (a) Electric field envelope. (b–d) Optical spectrum and spectral phase, interferometric autcorrelation and intensity autocorrelation of the pulse in (a). (e) Measured optical spectra before and after the fiber at an average power of 300 mW. (f) Power scaling: with increasing power spectral narrowing and pulse-broadening is observed. The inset in (a) shows the resulting pulse profile, when the grism is replaced by a grating compressor.
Fig. 3
Fig. 3 Results of numerical pulse propagation simulations for scaling to several nJ energy. The injected sech2 pulse has a bandwidth of 30 nm centered at a wavelength of 810 nm. The fiber dispersion is assumed to be bulk fused silica dispersion and the fiber length is 6 m. (a) Peak power in dependency on the pulse energy for three different nonlinear parameters γ. The shaded area indicates the experimentally investigated energy range. (b) Resulting time-dependent pulse power for two different parameter pairs: A 4 nJ pulse after propagation in a fiber with γ = 1 W−1/km (LMA) and a 2 nJ pulse after propagation in a fiber with γ = 10 W−1/km (FSSM).
Fig. 4
Fig. 4 Setup for fiber-coupled ASOPS experiments. A small fraction of the beam of the two Ti:Sapphire lasers is used for the frequency offset stabilization and the optical trigger (cross-correlation by two-photon absorption in GaP). The main part of the beam propagates through the grism compressor (a) and is coupled into the fibers. (b) The setup for the inspection of X-ray mirrors with a compact measurement unit for lateral scanning. (c) Principle of the terahertz setup. PCE: large area photoconductive emitter, P: polarizer, PBS: polarizing beam splitter, ADC: 100 MHz analog-to-digital converter, λ/4: quarter-wave plate, λ/2: half-wave plate.
Fig. 5
Fig. 5 Results of fiber-coupled ASOPS ultrasonic measurements on a Si/Mo superlattice. (a) Exemplary reflectivity change measured with 2 × 106 averages. Charge carrier generation and relaxation lead to a reflectivity change at zero time delay followed by an exponential decay. The insets show the extracted acoustic response of the mirror together with a damped sinusoidal fit to the data and the corresponding Fourier spectrum. (b) The result of an ASOPS mapping by moving the fiber-coupled measurement unit along the sample. The map consists of 100 × 100 pixels with an equidistant lateral distance of 100 μm.
Fig. 6
Fig. 6 (a) Terahertz transient. Inset: Zoom into the transient (b) Dynamic range at a measurement time of 2 s (black), 200 s (red) and 200 s using only the 50 ps time window centered around the main peak with a Gaussian window for the Fourier transformation (blue). Data is normalized to the noise floor.

Metrics