Abstract

In this work we investigate numerically and experimentally the resonance wavelength tuning of different nanoplasmonic antennas excited through the evanescent field of a single mode silicon nitride waveguide and study their interaction with this excitation field. Experimental interaction efficiencies up to 19% are reported and it is shown that the waveguide geometry can be tuned in order to optimize this interaction. Apart from the excitation of bright plasmon modes, an efficient coupling between the evanescent field and a dark plasmonic resonance is experimentally demonstrated and theoretically explained as a result of the propagation induced phase delay.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators

Maysamreza Chamanzar and Ali Adibi
Opt. Express 19(22) 22292-22304 (2011)

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy

Maysamreza Chamanzar, Zhixuan Xia, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(26) 32086-32098 (2013)

Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

Mahsa Darvishzadeh-Varcheie, Caner Guclu, Regina Ragan, Ozdal Boyraz, and Filippo Capolino
Opt. Express 24(25) 28337-28352 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  2. K. A. Willets and R.P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  3. N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  4. K. M. Mayer and J.H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref] [PubMed]
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
    [Crossref]
  6. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
    [Crossref]
  7. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  8. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref] [PubMed]
  9. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [Crossref]
  10. T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
    [Crossref]
  11. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
    [Crossref]
  12. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
    [Crossref] [PubMed]
  13. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
    [Crossref]
  14. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
    [Crossref]
  15. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
    [Crossref] [PubMed]
  16. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
    [Crossref]
  17. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
    [Crossref] [PubMed]
  18. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
    [Crossref]
  19. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
    [Crossref]
  20. T. J. Seok, A. Jamshidi, M. Eggleston, and M. C. Wu, “Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap,” Opt. Express 21(14), 16561–16569 (2013).
    [Crossref] [PubMed]
  21. L. Arnaud, A. Bruyant, M. Renault, Y. Hadjar, R. Salas-Montiel, A. Apuzzo, G. Lérondel, A. Morand, P. Benech, E. Le Coarer, and S. Blaize, “Waveguide-coupled nanowire as an optical antenna,” J. Opt. Soc. Am. A 30(11), 2347–2355 (2013).
    [Crossref]
  22. F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
    [Crossref]
  23. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
    [Crossref] [PubMed]
  24. M. Février, P. Gogol, J-M. Lourtioz, and B. Dagens, “Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared,” Opt. Express 21(21), 24504–24513 (2013).
    [Crossref] [PubMed]
  25. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
    [Crossref] [PubMed]
  26. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
    [Crossref]
  27. A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
    [Crossref]
  28. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  29. A. Dhakal, A.Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
    [Crossref] [PubMed]
  30. P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. W. M. Haynes, ed., CRC Handbook of Chemistry and Physics95 (Internet Version 2015) (CRC/Taylor and Francis, 2015).
  32. M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
    [Crossref] [PubMed]
  33. T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
    [Crossref] [PubMed]
  34. N. Verellen, P. Van Dorpe, D. Vercruysse, G.A.E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
    [Crossref] [PubMed]

2014 (2)

A. Dhakal, A.Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

2013 (7)

T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
[Crossref] [PubMed]

T. J. Seok, A. Jamshidi, M. Eggleston, and M. C. Wu, “Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap,” Opt. Express 21(14), 16561–16569 (2013).
[Crossref] [PubMed]

L. Arnaud, A. Bruyant, M. Renault, Y. Hadjar, R. Salas-Montiel, A. Apuzzo, G. Lérondel, A. Morand, P. Benech, E. Le Coarer, and S. Blaize, “Waveguide-coupled nanowire as an optical antenna,” J. Opt. Soc. Am. A 30(11), 2347–2355 (2013).
[Crossref]

M. Février, P. Gogol, J-M. Lourtioz, and B. Dagens, “Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared,” Opt. Express 21(21), 24504–24513 (2013).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref]

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

2012 (3)

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

2011 (6)

N. Verellen, P. Van Dorpe, D. Vercruysse, G.A.E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

K. M. Mayer and J.H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

2010 (1)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

2009 (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

2008 (2)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (2)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

2004 (2)

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

2003 (3)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
[Crossref]

2000 (1)

T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

1972 (1)

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

Adibi, A.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Apuzzo, A.

L. Arnaud, A. Bruyant, M. Renault, Y. Hadjar, R. Salas-Montiel, A. Apuzzo, G. Lérondel, A. Morand, P. Benech, E. Le Coarer, and S. Blaize, “Waveguide-coupled nanowire as an optical antenna,” J. Opt. Soc. Am. A 30(11), 2347–2355 (2013).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

Arango, F. B.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]

Arnaud, L.

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Baets, R.

A. Dhakal, A.Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Barbillon, G.

Bartenlian, B.

Benech, P.

Blaize, S.

L. Arnaud, A. Bruyant, M. Renault, Y. Hadjar, R. Salas-Montiel, A. Apuzzo, G. Lérondel, A. Morand, P. Benech, E. Le Coarer, and S. Blaize, “Waveguide-coupled nanowire as an optical antenna,” J. Opt. Soc. Am. A 30(11), 2347–2355 (2013).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

Bosman, M.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Bruyant, A.

Chamanzar, M.

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Chang, W-S.

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

Christy, R.W.

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, Y.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Claes, T.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
[Crossref]

Crozier, K. B.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Dagens, B.

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

Deshpande, P.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Dhakal, A.

A. Dhakal, A.Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[Crossref]

Du Bois, B.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Duan, H.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

DuvalMalinsky, M.

T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Eggleston, M.

Ekinci, Y.

T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

FenTan, S.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Février, M.

Finkelstein, H.

Fischer, H.

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
[Crossref] [PubMed]

Gogol, P.

Gómez Rivas, J.

Hadjar, Y.

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

Hafner, J.H.

K. M. Mayer and J.H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Haynes, C. L.

T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Helin, P.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

Jamshidi, A.

Jansen, R.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Jensen, T. R.

T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Johnson, P.B.

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

Koenderink, A. F.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]

Kwadrin, A.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]

Lagae, L.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Le Coarer, E.

Le Thomas, N.

Lérondel, G.

Leyssens, K.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lodewijks, K.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

Lourtioz, J-M.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

Martin, O.J.F.

T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J.H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[Crossref]

Mégy, R.

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

Merget, F.

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Morand, A.

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G.A.E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Muskens, O. L.

Neutens, P.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Nijhuis, C. A.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Peyskens, F.

A. Dhakal, A.Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Qiu, C.W.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Renault, M.

Romero-García, S.

Rottenberg, X.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Salas-Montiel, R.

Sánchez-Gil, J. A.

Schatz, G. C.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
[Crossref]

Schuck, P. J.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Selvaraja, S.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Seok, T. J.

Severi, S.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Siegfried, T.

T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
[Crossref] [PubMed]

Sigg, H.

T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
[Crossref] [PubMed]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Subramanian, A.Z.

A. Dhakal, A.Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Van Dorpe, P.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

N. Verellen, P. Van Dorpe, D. Vercruysse, G.A.E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[Crossref]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Van Duyne, R.P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

K. A. Willets and R.P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

Vandenbosch, G.A.E.

Vercruysse, D.

Verellen, N.

N. Verellen, P. Van Dorpe, D. Vercruysse, G.A.E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Willets, K. A.

K. A. Willets and R.P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Witzens, J.

Wu, M. C.

Wuytens, P.

Xia, Z.

Yang, J. K. W.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Yegnanarayanan, S.

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Zhang, L.

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
[Crossref]

Zhong, F.

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

ACS Nano (3)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]

T. Siegfried, Y. Ekinci, O.J.F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano 7(3), 2751–2757 (2013).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R.P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Chem. Rev. (3)

N. J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

K. M. Mayer and J.H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

IEEE Photon. J. (1)

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 1943 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (4)

T. R. Jensen, M. DuvalMalinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 111(3), 668–677 (2003).
[Crossref]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005).
[Crossref]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[Crossref]

Nano Lett. (5)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimers disease,” Nano Lett. 4(6), 1029–1034 (2004).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nature Photon. (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Opt. Express (8)

T. J. Seok, A. Jamshidi, M. Eggleston, and M. C. Wu, “Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap,” Opt. Express 21(14), 16561–16569 (2013).
[Crossref] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

M. Février, P. Gogol, J-M. Lourtioz, and B. Dagens, “Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared,” Opt. Express 21(21), 24504–24513 (2013).
[Crossref] [PubMed]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G.A.E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

P.B. Johnson and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[Crossref]

Sci. Rep. (1)

M. Bosman, L. Zhang, H. Duan, S. FenTan, C. A. Nijhuis, C.W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Other (1)

W. M. Haynes, ed., CRC Handbook of Chemistry and Physics95 (Internet Version 2015) (CRC/Taylor and Francis, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 On-chip geometry. (a) Schematic top-view (left) and cross-section (right) of the waveguide geometry. Each waveguide is patterned with an array of N = 20 antennas spaced by Λ = 10 μm. The antennas are excited with a TE-polarized (green arrow) waveguide mode with k-vector along the z-direction (red arrow). The stack consists of a Si/SiO2 substrate and a Si3N4 waveguide (height hrib = 220 nm and width wrib = 700 nm). On top of the Si3N4 a Ti/Au/Ti layer is deposited (with thicknesses t T i / t A u / t T i t o p). A thin resist layer with thickness tFOX remains at the end of the processing. (bd) Investigated antenna geometries with their corresponding geometrical parameters and a SEM picture of the fabricated structure: (b) single rod (SR) antenna with height H and width W, (c) double rod (DR) antenna with height H, gap Δ and width W, (d) bowtie (BT) antenna with height H, gap Δ and apex angle α. The white scale bar in the SEM pictures equals 100 nm.
Fig. 2
Fig. 2 Measurement setup. SC: supercontinuum source, NIRF: near-IR filter, FC: fiber coupling unit, C: achromatic fiber collimator, P: free-space broadband polarizer, LF: lensed fiber, XYZ: piezo controller stage, OSA: Optical Spectrum Analyzer, PC: OSA control using Python based measurement framework. Inset: scattering of an on-chip array of antennas. The red arrow depicts the propagation direction of the light while the green arrow represents the polarization state.
Fig. 3
Fig. 3 Relative Normalized Extinction Curves. The extinction spectra E n o r m r e l are normalized with their own maximum and then shifted relatively with respect to each other for improved visualization of the resonance wavelength behaviour. (ac) Theoretical spectra of single rod SR (a), double rod DR (b) and bowtie BT (c) antennas. SR spectra are depicted for different heights H (in nm) and fixed width W = 55 nm. For the DR and BT antennas, the spectra are plotted for five different heights H (in nm). For each height, seven different gaps (10, 20, 30, 40, 60, 90, 120 nm) are simulated and depicted by the shaded curves in the corresponding height color. The outer right curve of each color corresponds with Δ = 10 nm while the outer left curve corresponds with Δ = 120 nm (see red set of curves). The width of the DR antennas is fixed to W = 55 nm and the apex angle of the BT antennas is α = 60°. (df) Experimental spectra of SR (d), DR (e) and BT (f) antennas. Similar to the theoretical curves, the SR spectra are compared for different heights while the DR and BT spectra are compared for different heights and gaps. The heights and gaps mentioned on the experimental subplots are averages calculated using the measured dimensions (with SEM).
Fig. 4
Fig. 4 Comparison between numerical and experimental results. Resonance wavelength λres as a function of the antenna height H for the three antenna geometries. The solid lines represent numerical simulation data while the markers represent experimental data. (a) Experimental SR data (circles) compared with simulated data (solid line). (b) Experimental DR data (squares) for different gaps Δ (11 nm (red), 24 nm (green), 63 nm (blue)) compared with the simulation data (Δ = 10 nm (red), Δ = 20 nm (green), Δ = 60 nm (blue)). (c) Experimental BT data (triangles) for different gaps Δ (21 nm (red), 59 nm (green), 106 nm (blue)) compared with the simulation data (Δ = 20 nm (red), Δ = 60 nm (green), Δ = 120 nm (blue)).
Fig. 5
Fig. 5 Comparison of interaction efficiencies. (ab) Theoretical interaction efficiencies η(λres) of DR (a) and BT (b) antennas as a function of the resonance wavelength λres compared with the SR interaction efficiency (gray line). Each color represents a certain gap: 10 nm (red), 20 nm (yellow), 30 nm (orange), 40 nm (green), 60 nm (cyan), 90 nm (blue), 120 nm (purple). For a given gap, an increasing λres corresponds with increasing H. (c) Experimental interaction efficiencies of DR (square markers) and BT (triangle markers) antennas compared with SR antennas (gray circles). The red, orange, green and blue square markers represent structures with gaps of 11 nm, 22 nm, 43 nm and 62 nm respectively while the red, orange, green, blue and purple triangle markers represent structures with gaps of 18 nm, 28 nm, 55 nm, 78 nm and 100 nm respectively. The gray line is a fit to the SR interaction efficiencies. (d) Theoretical interaction efficiency η (solid curves, left vertical axis) of a SR antenna (H = 100 nm and W = 55 nm) and power fraction R (dashed curves, right vertical axis) as a function of the waveguide width wrib and height hrib (both evaluated at λres).
Fig. 6
Fig. 6 Multipole resonances. (a) Theoretical extinction spectra of BT antennas with varying apex angle (45° (red), 60° (orange), 75° (green), 90° (cyan), 100° (blue), 110° (purple)) and fixed height H = 160 nm and gap Δ = 20 nm. (b) Experimental extinction spectra of BT antennas with increasing apex angle: α = 45° (red), α = 60° (green), α = 90° (cyan) and α = 120° (blue). (cd) Simulated charge density plots at the top surface of a BT antenna with height H = 160 nm, gap Δ = 20 nm and apex angle α = 90°. (c) Normalized charge density of the quadrupolar plasmon mode at λ = 700 nm (corresponding with the red dot in (a)). (d) Normalized charge density of the dipolar plasmon mode at λ = 1125 nm (corresponding with the green dot in (a)). (e) Phase of the y-component of the electric field as a function of the propagation distance (evaluated in the center of the waveguide cross-section). The blue dashed lines represent the outer tips of the bowtie antenna (α = 90°, H = 160 nm, Δ = 20 nm). The red line corresponds to the quadrupole mode (red dot in (a)) and the green line corresponds to the dipolar mode (green dot in (a)).

Metrics