Abstract

In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle-free digital holographic recording of a diffusely reflecting object

You Seok Kim, Taegeun Kim, Sung Soo Woo, Hoonjong Kang, Ting-Chung Poon, and Changhe Zhou
Opt. Express 21(7) 8183-8189 (2013)

Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm

Fengjun Zhao, Xiaochao Qu, Xin Zhang, Ting-Chung Poon, Taegeun Kim, You Seok Kim, and Jimin Liang
Opt. Express 20(6) 5942-5954 (2012)

Autofocusing in optical scanning holography

Taegeun Kim and Ting-Chung Poon
Appl. Opt. 48(34) H153-H159 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using graphics processor,” Appl. Opt. 48(36), 6841–6850 (2009).
    [Crossref] [PubMed]
  2. Z. W. Xie, J. L. Zang, and Y. Zhang, “Accelerated algorithm for three-dimensional computer generated hologram based on the ray-tracing method,” J. Mod. Opt. 60(10), 797–802 (2013).
    [Crossref]
  3. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48(34), H120–H136 (2009).
    [Crossref] [PubMed]
  4. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [Crossref] [PubMed]
  5. Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T.-C. Poon, and C. Zhou, “Speckle-free digital holographic recording of a diffusely reflecting object,” Opt. Express 21(7), 8183–8189 (2013).
    [Crossref] [PubMed]
  6. C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” IEEE Comput. 46, 52 (2005).
  7. C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).
  8. C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
    [Crossref]
  9. J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
    [Crossref]
  10. T. Kim, Y. S. Kim, W. S. Kim, and T.-C. Poon, “Algorithm for converting full-parallax holograms to horizontal-parallax-only holograms,” Opt. Lett. 34(8), 1231–1233 (2009).
    [Crossref] [PubMed]
  11. T. Kim and Y. S. Kim, “Three-dimensional holographic imaging of a diffusely reflective object with conversion to a horizontal-parallax-only hologram,” in SPIE/COS Photonics Asia (2014), pp. 92710S.
  12. T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. A 2(4), 521–527 (1985).
    [Crossref]
  13. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17(3), 380–390 (2000).
    [Crossref] [PubMed]
  14. T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Opt. Lett. 25(4), 215–217 (2000).
    [Crossref] [PubMed]
  15. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26(14), 2788–2798 (1987).
    [Crossref] [PubMed]
  16. J. P. Allebach, “DBS: retrospective and future directions,” Proc. SPIE 4300, 410810 (2001).
  17. X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
    [Crossref]
  18. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Efficient design of direct-binary-search computer-generated holograms,” J. Opt. Soc. Am. A 8(4), 652–660 (1991).
    [Crossref]
  19. T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
    [Crossref]
  20. J. Y. Son, B. R. Lee, O. O. Chernyshov, K. A. Moon, and H. Lee, “Holographic display based on a spatial DMD array,” Opt. Lett. 38(16), 3173–3176 (2013).
    [Crossref] [PubMed]

2013 (3)

2012 (1)

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

2009 (3)

2006 (1)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” IEEE Comput. 46, 52 (2005).

2004 (1)

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

2001 (2)

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

J. P. Allebach, “DBS: retrospective and future directions,” Proc. SPIE 4300, 410810 (2001).

2000 (2)

1991 (1)

1987 (1)

1985 (1)

1970 (1)

J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
[Crossref]

1969 (1)

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

Allebach, J. P.

Aswendt, P.

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

Berrang, J.

J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
[Crossref]

Burckhardt, C.

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” IEEE Comput. 46, 52 (2005).

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Chernyshov, O. O.

Coomber, S.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Enloe, L.

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

H.-Y. Chen, R.

Hofling, R.

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

Indebetouw, G.

Jennison, B. K.

Kang, H.

Katz, B.

Kim, T.

Kim, W. S.

Kim, Y. S.

Klysubun, P.

Kreis, T.

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

Lee, B. R.

Lee, H.

Li, J.

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

Long, Q.

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

Miller, R.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Mishina, T.

Moon, K. A.

Okano, F.

Okui, M.

Payne, D.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Poon, T.-C.

Rosen, J.

Schilling, B. W.

Seldowitz, M. A.

Shaked, N. T.

Shinoda, K.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” IEEE Comput. 46, 52 (2005).

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Smith, A.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Smith, M.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Son, J. Y.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” IEEE Comput. 46, 52 (2005).

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Suzuki, Y.

Sweeney, D. W.

Tao, T.

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

Watson, P.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

Wilkinson, T. D.

Woo, S. S.

Wu, M. H.

Wu, X. P.

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

Xie, Z. W.

Z. W. Xie, J. L. Zang, and Y. Zhang, “Accelerated algorithm for three-dimensional computer generated hologram based on the ray-tracing method,” J. Mod. Opt. 60(10), 797–802 (2013).
[Crossref]

Zang, J. L.

Z. W. Xie, J. L. Zang, and Y. Zhang, “Accelerated algorithm for three-dimensional computer generated hologram based on the ray-tracing method,” J. Mod. Opt. 60(10), 797–802 (2013).
[Crossref]

Zhang, Y.

Z. W. Xie, J. L. Zang, and Y. Zhang, “Accelerated algorithm for three-dimensional computer generated hologram based on the ray-tracing method,” J. Mod. Opt. 60(10), 797–802 (2013).
[Crossref]

Zhao, X. D.

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

Zhou, C.

Appl. Opt. (4)

Bell Syst. Tech. J. (2)

C. Burckhardt and L. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tube,” Bell Syst. Tech. J. 48(5), 1529–1535 (1969).
[Crossref]

J. Berrang, “Television transmission of holograms using a narrow-band video signal,” Bell Syst. Tech. J. 49(5), 879–887 (1970).
[Crossref]

IEEE Comput. (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” IEEE Comput. 46, 52 (2005).

J. Mod. Opt. (1)

Z. W. Xie, J. L. Zang, and Y. Zhang, “Accelerated algorithm for three-dimensional computer generated hologram based on the ray-tracing method,” J. Mod. Opt. 60(10), 797–802 (2013).
[Crossref]

J. Opt. Soc. Am. A (3)

Opt. Eng. (2)

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

X. D. Zhao, J. Li, T. Tao, Q. Long, and X. P. Wu, “Improved direct binary search-based algorithm for generating holograms for the application of holographic optical tweezers,” Opt. Eng. 51(1), 015801 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualisation,” Proc. SPIE 5290, 27–41 (2004).

J. P. Allebach, “DBS: retrospective and future directions,” Proc. SPIE 4300, 410810 (2001).

Other (1)

T. Kim and Y. S. Kim, “Three-dimensional holographic imaging of a diffusely reflective object with conversion to a horizontal-parallax-only hologram,” in SPIE/COS Photonics Asia (2014), pp. 92710S.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical scanning holography (M: mirror, AOM: acousto-optic modulator, BS: beam splitter, BE: beam expander, L: lens, SM: scanning mirror, PD: photo-detector, PC: personal computer)
Fig. 2
Fig. 2 (a) Amplitude of the complex hologram of the real object; (b) Phase of the complex hologram of the real object
Fig. 3
Fig. 3 Block diagram of the iterative direct-binary search algorithm
Fig. 4
Fig. 4 Binary hologram after application of DBS. MSE is only computed in the center of the image
Fig. 5
Fig. 5 Reconstruction of the object obtained from the binary hologram at different distances
Fig. 6
Fig. 6 Evolution of the MSE with the number of iteration for different reconstruction plane (95mm, 130 mm and 165mm)
Fig. 7
Fig. 7 Optical set-up for reconstructing the hologram with a DMD
Fig. 8
Fig. 8 Optical reconstruction of the binary hologram in the reference plane

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H com ( n,m ) z o Δz z o +Δz I 0 (n,m;z) j λz exp{ j πΔ l 2 λz ( n 2 + m 2 ) }dz ,
H space i ( n,m )= 1 MN u= M 2 M 2 1 v= N 2 N 2 1 H Fourier i ( u,v )exp[ j2π( un M + vn N ) ]
H space i ( n,m )=IFFT[ H Fourier i ( u,v ) ]
H ref ( n,m )= H com ( n,m ) j λ z o exp{ j πΔ l 2 λ z o ( n 2 + m 2 ) }
MS E i = 1 MN n= M 2 M 2 1 m= N 2 N 2 1 ( H ref ( n,m )k H space i ( n,m )) u= M 2 M 2 1 v= N 2 N 2 1 | H ref ( n,m ) | 2
k= n= M 2 M 2 1 m= N 2 N 2 1 H ref ( n,m )conj[ H space i ( n,m ) ] u= M 2 M 2 1 v= N 2 N 2 1 | H space i ( n,m ) | 2

Metrics