Abstract

We demonstrate photophoretic trapping of micron-sized absorbing particles in air using pulsed and continuous-wave (CW) ultraviolet laser illumination at wavelengths of 351 nm and 244 nm. We compared the particle trapping dynamics in two trapping geometries consisting of a hollow optical cone formed by light propagating either with or against gravity. This comparison allowed us to isolate the influence of the photophoretic force from the radiative pressure and the convective forces. We found that the absorbing spherical particles tested experienced a positive photophoretic force, whereas the spatially irregular, non-spherical particles tested experienced a negative photophoretic force. By using two trapping geometries, both spherical and non-spherical absorbing particles could be trapped and held securely in place. The position of the trapped particles exhibited a standard deviation of less than 1 µm over 20 seconds. Moreover, by operating in the UV and deep-UV where the majority of airborne materials are absorptive, the system was able to trap a wide range of particle types. Such a general purpose optical trap could enable on-line characterization of airborne particles when coupled with interrogation techniques such as Raman spectroscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

Optical trap for both transparent and absorbing particles in air using a single shaped laser beam

Brandon Redding and Yong-Le Pan
Opt. Lett. 40(12) 2798-2801 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  3. A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces,’,” Nat. Photonics 7(1), 24–27 (2012).
    [Crossref]
  4. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [Crossref] [PubMed]
  5. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
    [Crossref] [PubMed]
  6. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  7. Y.-L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
    [Crossref] [PubMed]
  8. J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
    [Crossref]
  9. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
    [Crossref] [PubMed]
  10. Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
    [Crossref]
  11. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22(11), 816–818 (1997).
    [Crossref] [PubMed]
  12. T. Li, “Fundamental tests of physics with optically trapped microspheres,” (Springer Science, 2013), pp. 21–28.
  13. H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26(5), 717–734 (1995).
    [Crossref]
  14. B. Zhao, D. Katoshevski, and E. Bar-Ziv, “Temperature determination of single micrometre-sized particles from forced / free convection and photophoresis,” Meas. Sci. Technol. 10(12), 1222–1232 (1999).
    [Crossref]
  15. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
    [Crossref]
  16. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  17. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  18. Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57(3), 564–571 (1976).
    [Crossref]
  19. S. Arnold and M. Lewittes, “Size dependence of the photophoretic force,” J. Appl. Phys. 53(7), 5314–5319 (1982).
    [Crossref]
  20. H. Rohatschek, “Direction Magnitude and Causes of Photoporetic Forces,” J. Aerosol Sci. 16(1), 29–42 (1985).
    [Crossref]
  21. O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
    [Crossref]
  22. C. Wang, Y.-L. Pan, and M. Coleman, “Experimental observation of particle cones formed by optical trapping,” Opt. Lett. 39(9), 2767–2770 (2014).
    [Crossref] [PubMed]
  23. F. Liu, Z. Zhang, Y. Wei, Q. Zhang, T. Cheng, and X. Wu, “Photophoretic trapping of multiple particles in tapered-ring optical field,” Opt. Express 22(19), 23716–23723 (2014).
    [Crossref] [PubMed]
  24. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed. (Wiley, 1996).
  25. V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, “Optical manipulation of particle ensembles in air,” Opt. Lett. 37(11), 1934–1936 (2012).
    [Crossref] [PubMed]
  26. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
    [PubMed]
  27. Y.-Q. Li, “Optical pulling, trapping and identification of single airborne absorbing particles and bioaerosols using negative photo-phoretic forces,” in The 6th Int.Symp. Cold Atom Phys. June 14–17, 2014, Taiyuan, China, abstract page 33.
  28. H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region : Mg, Al, Cu, Ag, Au, Bi, C, Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
    [Crossref]
  29. S. C. Hill, Y.-L. Pan, C. Williamson, J. L. Santarpia, and H. H. Hill, “Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria,” Opt. Express 21(19), 22285–22313 (2013).
    [Crossref] [PubMed]
  30. S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
    [Crossref] [PubMed]

2014 (4)

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
[Crossref]

C. Wang, Y.-L. Pan, and M. Coleman, “Experimental observation of particle cones formed by optical trapping,” Opt. Lett. 39(9), 2767–2770 (2014).
[Crossref] [PubMed]

F. Liu, Z. Zhang, Y. Wei, Q. Zhang, T. Cheng, and X. Wu, “Photophoretic trapping of multiple particles in tapered-ring optical field,” Opt. Express 22(19), 23716–23723 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (2)

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[Crossref] [PubMed]

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

1999 (1)

B. Zhao, D. Katoshevski, and E. Bar-Ziv, “Temperature determination of single micrometre-sized particles from forced / free convection and photophoresis,” Meas. Sci. Technol. 10(12), 1222–1232 (1999).
[Crossref]

1997 (1)

1996 (1)

1995 (1)

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26(5), 717–734 (1995).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1985 (1)

H. Rohatschek, “Direction Magnitude and Causes of Photoporetic Forces,” J. Aerosol Sci. 16(1), 29–42 (1985).
[Crossref]

1982 (2)

S. Arnold and M. Lewittes, “Size dependence of the photophoretic force,” J. Appl. Phys. 53(7), 5314–5319 (1982).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

1976 (1)

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57(3), 564–571 (1976).
[Crossref]

1975 (1)

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

S. Arnold and M. Lewittes, “Size dependence of the photophoretic force,” J. Appl. Phys. 53(7), 5314–5319 (1982).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Atkin, S. L.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Barrier, S.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Bar-Ziv, E.

B. Zhao, D. Katoshevski, and E. Bar-Ziv, “Temperature determination of single micrometre-sized particles from forced / free convection and photophoresis,” Meas. Sci. Technol. 10(12), 1222–1232 (1999).
[Crossref]

Beresnev, L. A.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Chen, Z.

Cheng, T.

Christodoulides, D. N.

Coleman, M.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
[Crossref]

C. Wang, Y.-L. Pan, and M. Coleman, “Experimental observation of particle cones formed by optical trapping,” Opt. Lett. 39(9), 2767–2770 (2014).
[Crossref] [PubMed]

Y.-L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
[Crossref] [PubMed]

Cui, Z.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Desyatnikov, A. S.

Dogariu, A.

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces,’,” Nat. Photonics 7(1), 24–27 (2012).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Efremidis, N. K.

Fletcher, P. D. I.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Gahagan, K. T.

Gudat, W.

Hagemann, H.-J.

Hill, H. H.

Hill, S. C.

Hnatovsky, C.

Izdebskaya, Y. V.

Jovanovic, O.

O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
[Crossref]

Katoshevski, D.

B. Zhao, D. Katoshevski, and E. Bar-Ziv, “Temperature determination of single micrometre-sized particles from forced / free convection and photophoresis,” Meas. Sci. Technol. 10(12), 1222–1232 (1999).
[Crossref]

Kivshar, Y. S.

Kobayashi, T.

Krolikowski, W.

Kunz, C.

Kutukov, V. B.

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57(3), 564–571 (1976).
[Crossref]

Lewittes, M.

S. Arnold and M. Lewittes, “Size dependence of the photophoretic force,” J. Appl. Phys. 53(7), 5314–5319 (1982).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

Li, Y.

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Lin, J.

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Liu, F.

Mackenzie, G.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Mills, M. S.

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Omori, R.

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

Pan, Y.-L.

Panel, V.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Prakash, J.

Rode, A. V.

Rohatschek, H.

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26(5), 717–734 (1995).
[Crossref]

H. Rohatschek, “Direction Magnitude and Causes of Photoporetic Forces,” J. Aerosol Sci. 16(1), 29–42 (1985).
[Crossref]

Sáenz, J.

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces,’,” Nat. Photonics 7(1), 24–27 (2012).
[Crossref]

Santarpia, J. L.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
[Crossref]

S. C. Hill, Y.-L. Pan, C. Williamson, J. L. Santarpia, and H. H. Hill, “Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria,” Opt. Express 21(19), 22285–22313 (2013).
[Crossref] [PubMed]

Shchukin, E. R.

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57(3), 564–571 (1976).
[Crossref]

Shostka, N.

Shvedov, V. G.

Sol, V.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Sukhov, S.

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces,’,” Nat. Photonics 7(1), 24–27 (2012).
[Crossref]

Suzuki, A.

Swartzlander, G. A.

Wang, C.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
[Crossref]

C. Wang, Y.-L. Pan, and M. Coleman, “Experimental observation of particle cones formed by optical trapping,” Opt. Lett. 39(9), 2767–2770 (2014).
[Crossref] [PubMed]

Wei, Y.

Williamson, C.

Wu, X.

Yalamov, Y. I.

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57(3), 564–571 (1976).
[Crossref]

Zhang, P.

Zhang, Q.

Zhang, X.

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

Zhang, Z.

Zhao, B.

B. Zhao, D. Katoshevski, and E. Bar-Ziv, “Temperature determination of single micrometre-sized particles from forced / free convection and photophoresis,” Meas. Sci. Technol. 10(12), 1222–1232 (1999).
[Crossref]

Appl. Phys. Lett. (3)

J. Lin and Y. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104(10), 101909 (2014).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104(11), 113507 (2014).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

J. Aerosol Sci. (2)

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26(5), 717–734 (1995).
[Crossref]

H. Rohatschek, “Direction Magnitude and Causes of Photoporetic Forces,” J. Aerosol Sci. 16(1), 29–42 (1985).
[Crossref]

J. Appl. Phys. (1)

S. Arnold and M. Lewittes, “Size dependence of the photophoretic force,” J. Appl. Phys. 53(7), 5314–5319 (1982).
[Crossref]

J. Colloid Interface Sci. (1)

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, “Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle,” J. Colloid Interface Sci. 57(3), 564–571 (1976).
[Crossref]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. B (1)

S. L. Atkin, S. Barrier, Z. Cui, P. D. I. Fletcher, G. Mackenzie, V. Panel, V. Sol, and X. Zhang, “UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed),” J. Photochem. Photobiol. B 102(3), 209–217 (2011).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

O. Jovanovic, “Photophoresis—Light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
[Crossref]

Meas. Sci. Technol. (1)

B. Zhao, D. Katoshevski, and E. Bar-Ziv, “Temperature determination of single micrometre-sized particles from forced / free convection and photophoresis,” Meas. Sci. Technol. 10(12), 1222–1232 (1999).
[Crossref]

Nat. Photonics (1)

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces,’,” Nat. Photonics 7(1), 24–27 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Other (5)

T. Li, “Fundamental tests of physics with optically trapped microspheres,” (Springer Science, 2013), pp. 21–28.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed. (Wiley, 1996).

Y.-Q. Li, “Optical pulling, trapping and identification of single airborne absorbing particles and bioaerosols using negative photo-phoretic forces,” in The 6th Int.Symp. Cold Atom Phys. June 14–17, 2014, Taiyuan, China, abstract page 33.

Supplementary Material (5)

» Media 1: AVI (2998 KB)     
» Media 2: AVI (2822 KB)     
» Media 3: AVI (2832 KB)     
» Media 4: AVI (6795 KB)     
» Media 5: AVI (2818 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Estimation of the relative strength of the photophoretic, convective, and radiative forces acting on a spherical airborne particle as a function of the (a) diameter, (b) thermal conductivity, and (c) absorption length of the particle while the remaining parameters are fixed at I0 = 100 W/cm2, d = 5 µm, labs = 0.1 µm, and kf = 0.159 W/m/K. The forces are normalized to the gravitational force acting on the particle.
Fig. 2
Fig. 2 (a) Experimental apparatus. We used either a CW laser operating at λ = 244 nm or a pulsed laser operating at λ = 351 nm (10 kHz, 70 ns). The laser was passed through two axicon lenses to form a collimated hollow beam which then entered one of the trapping geometries. In the “Downward” trapping geometry, the beam was reflected by a curved mirror to form a hollow cone with the light propagation in the direction of gravity. In the “Upward” trapping geometry, a lens was used to focus the hollow beam, forming a hollow cone with light propagating against gravity. (b, c) The bottom row shows the direction of the convective, gravitational, and radiative forces acting on the particle along the optical axis in the two geometries. The photophoretic force depends both on the particle properties and the position in the trap and we assume it is not known a priori. Instead, by comparing the net force acting on the particles in these two geometries, we are able to deduce the direction of the photophoretic force for different particle types. Note that the lengths of the vectors are not indicative of the relative strength of the forces but only their direction.
Fig. 3
Fig. 3 Comparison of particle motion in the trapping geometries. The top row shows the behavior using a downward oriented cone whereas the bottom row shows the behavior using an upward oriented cone. Two particle types are considered, fungal spores (Johnson smut grass spores), which are highly absorbing, spatially irregular particles, and fluorescent polymer spheres. The supplementary videos show the flow of each particle type in the two trapping geometries (See Media 1, Media 2, Media 3 and Media 4). The right column summarizes the observations from the videos. The fungal spores experienced a negative photophoretic force and travelled against the illumination direction. Nonetheless, the fungal spore particles were trapped near the focal point of the cone using either illumination geometry. The fluorescent polymer spheres, on the other hand, experienced a positive photophoretic force, travelled along the illumination direction, and were only consistently trapped using the upward illumination geometry.
Fig. 4
Fig. 4 (a) Trapped Johnson grass particle in the glass chamber using the downward hollow cone. (b) Close-up off the trapped particle, the supplementary video shows that the particle is held securely in place (see Media 5). (c, d) Cross sections of the image of the particle over 20 seconds along the horizontal (c) and vertical (d) directions. The particle position remains well defined throughout the observation period, with a standard deviation of less than 1 µm.

Tables (1)

Tables Icon

Table 1 Summary of trapped particle typesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F rp = P abs /c=π a 2 Q abs I 0 c
F fc = A fc ( 1+3760d ) d 2.2 ( T s T ) 1.06+2100d
F pp = J 1 9π μ a 2 a I 0 2 ρ a T( k f +2 k a )

Metrics