Abstract

We experimentally demonstrate compensation of nonlinear distortion caused by the Kerr effect in a 3 × 32-Gbaud quadrature phase-shift keying (QPSK) wavelength-division multiplexing (WDM) transmission system. We use optical phase conjugation (OPC) produced by four-wave mixing (FWM) in a 7-mm long silicon nanowire. A clear improvement in Q-factor is shown after 800-km transmission with high span input power when comparing the system with and without the optical phase conjugation module. The influence of OSNR degradation introduced by the silicon nanowire is analysed by comparing transmission systems of three different lengths. This is the first demonstration of nonlinear compensation using a silicon nanowire.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

Hao Hu, Robert M. Jopson, Alan H. Gnauck, Sebastian Randel, and S. Chandrasekhar
Opt. Express 25(3) 1618-1628 (2017)

Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation

Mark D. Pelusi and Benjamin J. Eggleton
Opt. Express 20(7) 8015-8023 (2012)

Nonlinearity compensation using optical phase conjugation deployed in discretely amplified transmission systems

Mohammad A. Z. Al-Khateeb, Mary E. McCarthy, Christian Sánchez, and Andrew D. Ellis
Opt. Express 26(18) 23945-23959 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [Crossref]
  2. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [Crossref]
  3. D. M. Pepper and A. Yariv, “Compensation for phase distortions in nonlinear media by phase conjugation,” Opt. Lett. 5(2), 59–60 (1980).
    [Crossref] [PubMed]
  4. P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
    [Crossref] [PubMed]
  5. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
    [Crossref]
  6. S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
    [Crossref]
  7. P. Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integrated Opt. 28(3), 179–209 (2009).
    [Crossref]
  8. H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” in Proceedings of Optical Fiber Communication Conference, OFC 2014, paper M3C.2.
    [Crossref]
  9. M. Morshed, L. B. Du, B. Foo, M. D. Pelusi, B. Corcoran, and A. J. Lowery, “Experimental demonstrations of dual polarization CO-OFDM using mid-span spectral inversion for nonlinearity compensation,” Opt. Express 22(9), 10455–10466 (2014).
    [Crossref] [PubMed]
  10. F. Da Ros, I. Sackey, R. Elschner, T. Richter, C. Meuer, M. Noelle, M. Jazayerifar, K. Petermann, C. Peucheret, and C. Schubert, “Kerr nonlinearity compensation in a 5×28-GBd PDM 16-QAM WDM system using fiber-based optical phase conjugation,” European Conference on Optical Communication, ECOC 2014, paper P.5.3.
  11. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
    [Crossref]
  12. I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” in Proceedings of Optical Fiber Communication Conference, OFC 2000, paper PD33.
  13. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
    [Crossref] [PubMed]
  14. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
    [Crossref]
  15. Y. L. Lee, Y. C. Noh, C. Y. T. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
    [Crossref] [PubMed]
  16. L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
    [Crossref]
  17. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]
  18. S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
    [Crossref]
  19. A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
    [Crossref] [PubMed]
  20. D. Vukovic, Y. Ding, H. Hu, H. Ou, L. K. Oxenløwe, and C. Peucheret, “Polarization-insensitive wavelength conversion of 40 Gb/s NRZ-DPSK signals in a silicon polarization diversity circuit,” Opt. Express 22(10), 12467–12474 (2014).
    [Crossref] [PubMed]
  21. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [Crossref]

2014 (3)

2012 (3)

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
[Crossref] [PubMed]

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
[Crossref]

2010 (3)

2009 (1)

P. Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integrated Opt. 28(3), 179–209 (2009).
[Crossref]

2007 (2)

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
[Crossref]

2006 (1)

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

2005 (2)

P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
[Crossref] [PubMed]

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

2003 (1)

1996 (1)

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

1980 (1)

Adams, R.

Armstrong, J.

Ayotte, S.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

Chagnon, M.

Chen, L. R.

Clausen, A.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Climent Monsalve, C.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Cohen, O.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

Corcoran, B.

Cotter, D.

Cristiani, I.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

de Waardt, H.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Degiorgio, V.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

Ding, Y.

Du, L. B.

Ellis, A. D.

Elschner, R.

Fejer, M. M.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

Foo, B.

Gajda, A.

Galili, M.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Hu, H.

D. Vukovic, Y. Ding, H. Hu, H. Ou, L. K. Oxenløwe, and C. Peucheret, “Polarization-insensitive wavelength conversion of 40 Gb/s NRZ-DPSK signals in a silicon polarization diversity circuit,” Opt. Express 22(10), 12467–12474 (2014).
[Crossref] [PubMed]

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Hvam, J. M.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Ip, E.

Jansen, S. L.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Jazayerifar, M.

Jeppesen, P.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Ji, H.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Jung, C. Y. T.

Khoe, G. D.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Ko, D. K.

Krummrich, P. M.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Langrock, C.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

Lee, J.

Lee, Y. L.

Li, J.

Lowery, A. J.

Malekiha, M.

Marazzi, L.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

Martinelli, M.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

Minzioni, P.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

P. Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integrated Opt. 28(3), 179–209 (2009).
[Crossref]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
[Crossref] [PubMed]

Morshed, M.

Mulvad, H. C. H.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Noh, Y. C.

Ou, H.

Oxenløwe, L. K.

D. Vukovic, Y. Ding, H. Hu, H. Ou, L. K. Oxenløwe, and C. Peucheret, “Polarization-insensitive wavelength conversion of 40 Gb/s NRZ-DPSK signals in a silicon polarization diversity circuit,” Opt. Express 22(10), 12467–12474 (2014).
[Crossref] [PubMed]

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Paniccia, M. J.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

Pelusi, M. D.

Pepper, D. M.

Petermann, K.

Peucheret, C.

Plant, D. V.

Pu, M.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Pusino, V.

Radic, S.

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
[Crossref]

Richter, T.

Rong, H.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

Schiffini, A.

Schubert, C.

Shirasaki, M.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

Spälter, S.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Spasojevic, M.

Tian, H.

Tillack, B.

van den Borne, D.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

Vukovic, D.

Watanabe, S.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

Winzer, G.

Xu, S.

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

Yariv, A.

Yu, T.

Yvind, K.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

Zhao, J.

Zimmermann, L.

Electron. Lett. (1)

S. Ayotte, S. Xu, H. Rong, O. Cohen, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[Crossref]

Fiber Integrated Opt. (1)

P. Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integrated Opt. 28(3), 179–209 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
[Crossref]

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[Crossref]

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon–Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (7)

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[Crossref] [PubMed]

A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
[Crossref] [PubMed]

R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
[Crossref] [PubMed]

M. Morshed, L. B. Du, B. Foo, M. D. Pelusi, B. Corcoran, and A. J. Lowery, “Experimental demonstrations of dual polarization CO-OFDM using mid-span spectral inversion for nonlinearity compensation,” Opt. Express 22(9), 10455–10466 (2014).
[Crossref] [PubMed]

D. Vukovic, Y. Ding, H. Hu, H. Ou, L. K. Oxenløwe, and C. Peucheret, “Polarization-insensitive wavelength conversion of 40 Gb/s NRZ-DPSK signals in a silicon polarization diversity circuit,” Opt. Express 22(10), 12467–12474 (2014).
[Crossref] [PubMed]

Y. L. Lee, Y. C. Noh, C. Y. T. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (3)

H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” in Proceedings of Optical Fiber Communication Conference, OFC 2014, paper M3C.2.
[Crossref]

F. Da Ros, I. Sackey, R. Elschner, T. Richter, C. Meuer, M. Noelle, M. Jazayerifar, K. Petermann, C. Peucheret, and C. Schubert, “Kerr nonlinearity compensation in a 5×28-GBd PDM 16-QAM WDM system using fiber-based optical phase conjugation,” European Conference on Optical Communication, ECOC 2014, paper P.5.3.

I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” in Proceedings of Optical Fiber Communication Conference, OFC 2000, paper PD33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup. (a) Dispersion-unmanaged transmission system with OPC module. (b) WDM QPSK transmitter. (c) OPC module. (d) Coherent receiver.
Fig. 2
Fig. 2 Performance for the 800-km link. (a) Spectrum at the output of the silicon nanowire. (b) Q-factor versus power launched into each span. (c) Constellation diagrams for all three channels with and without the OPC module for 13 dBm launched into each span.
Fig. 3
Fig. 3 (a) Q-factor averaged over the three channels and (b) OSNR at the receiver (Rx) versus power launched into each span for transmission with and without OPC over 480-km, 640-km and 800 km long links.
Fig. 4
Fig. 4 a) FWM conversion efficiency as a function of pump power launched into the waveguide. b) Improvement in averaged Q-factor between the links with and without OPC versus conversion efficiency of the phase conjugator for 13 dBm of total power launched into the 480-km long optical link together with the corresponding averaged OSNRs.

Metrics