Abstract

We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate

Kodo Kawase, Takaaki Hatanaka, Hidenori Takahashi, Koichiro Nakamura, Tetsuo Taniuchi, and Hiromasa Ito
Opt. Lett. 25(23) 1714-1716 (2000)

Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator

P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson
Opt. Lett. 23(24) 1886-1888 (1998)

References

  • View by:
  • |
  • |
  • |

  1. T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004).
    [Crossref]
  2. P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, and H. Ito, “Terahertz generation with tandem seeded optical parametric generators,” Opt. Lett. 30(6), 640–642 (2005).
    [Crossref] [PubMed]
  3. B. Monoszlai, C. Vicario, M. Jazbinsek, and C. P. Hauri, “High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength,” Opt. Lett. 38(23), 5106–5109 (2013).
    [Crossref] [PubMed]
  4. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  5. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32(19), 2885–2887 (2007).
    [Crossref] [PubMed]
  6. D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).
  7. G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).
  8. P. Y. Han, M. Tani, F. Pan, and X. C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25(9), 675–677 (2000).
    [Crossref] [PubMed]
  9. P. Zhao, B. Zhang, E. Li, R. Zhou, D. Xu, Y. Lu, T. Zhang, F. Ji, X. Zhu, P. Wang, and J. Yao, “Experimental study on a high conversion efficiency, low threshold, high-repetition-rate periodically poled lithium niobate optical parametric generator,” Opt. Express 14(16), 7224–7229 (2006).
    [Crossref] [PubMed]
  10. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Quantum Electron. 14(5), 1298–1311 (2008).
    [Crossref]
  11. S. Russell, M. J. Missey, P. Powers, and K. Schepler,S. Brueck, R. Fields, M. Fejer, and F. Leonberger, eds., “Periodically poled lithium niobate with a 20° fan angle for continuous OPG tuning,” in Conference on Lasers and Electro-Optics, S. Brueck, R. Fields, M. Fejer, and F. Leonberger, eds., OSA Technical Digest (Optical Society of America, 2000), paper CFN6.
  12. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
    [Crossref] [PubMed]
  13. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express 18(16), 17306–17312 (2010).
    [Crossref] [PubMed]
  14. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000).
    [Crossref] [PubMed]
  15. K. Nawata, Y. Miyake, S. Hayashi, T. Notake, H. Kawamata, T. Matsukawa, F. Qi, and H. Minamide, “Study of efficient optical parametric generation in KTP crystal as pump source for DAST-DFG,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.52.
  16. E. Hérault, S. Forget, G. Lucas-Leclin, and P. Georges, “Continuously tunable visible compact laser source using optical parametric generation in microlaser-pumped periodically poled lithium niobate,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 339.
  17. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
    [Crossref]
  18. T. Notake, K. Nawata, H. Kawamata, T. Matsukawa, F. Qi, and H. Minamide, “Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dual-wavelength BBO optical parametric oscillator,” Opt. Express 20(23), 25850–25857 (2012).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

2010 (1)

2008 (2)

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Quantum Electron. 14(5), 1298–1311 (2008).
[Crossref]

D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).

2007 (1)

2006 (1)

2005 (1)

2004 (1)

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004).
[Crossref]

2000 (2)

1999 (1)

1998 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

1997 (1)

1995 (1)

G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).

Alkuwari, R. A.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Ducret, R.

G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Gunter, P.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Quantum Electron. 14(5), 1298–1311 (2008).
[Crossref]

G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).

Han, P. Y.

Hauri, C. P.

Haus, J. W.

Ito, H.

Jazbinsek, M.

B. Monoszlai, C. Vicario, M. Jazbinsek, and C. P. Hauri, “High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength,” Opt. Lett. 38(23), 5106–5109 (2013).
[Crossref] [PubMed]

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Quantum Electron. 14(5), 1298–1311 (2008).
[Crossref]

Jensby, K.

Ji, F.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Jundt, D. H.

Kawamata, H.

Kawase, K.

Keiding, S. R.

Knopfle, G.

G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).

Li, E.

Liu, P.

D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).

Lu, Y.

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Matsukawa, T.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Minamide, H.

Miyamoto, K.

Mizuno, M.

Monoszlai, B.

Mutter, L.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Quantum Electron. 14(5), 1298–1311 (2008).
[Crossref]

Nakanishi, H.

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004).
[Crossref]

Nawata, K.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Notake, T.

Ohno, S.

Okada, S.

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004).
[Crossref]

Pan, F.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Powers, P. E.

Qi, F.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Schlesser, R.

G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Shi, W.

D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).

Sohma, S.

Suizu, K.

Takahashi, H.

Tani, M.

Taniuchi, T.

Tashiro, H.

Urata, Y.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Vicario, C.

Wada, S.

Walther, M.

Wang, P.

Wang, Y.

D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Xu, D.

Yamashita, T.

Yao, J.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Zhang, B.

Zhang, T.

Zhang, X. C.

Zhao, P.

Zhong, K.

D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).

Zhou, R.

Zhu, X.

IEEE J. Quantum Electron. (1)

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Quantum Electron. 14(5), 1298–1311 (2008).
[Crossref]

J. Appl. Phys. (1)

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004).
[Crossref]

J. Elect. Sci. Tech. (1)

D. Xu, P. Liu, Y. Wang, K. Zhong, W. Shi, and J. Yao, “Monochromatic tunable terahertz source base on nonlinear optics,” J. Elect. Sci. Tech. 11(4), 339–348 (2008).

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Nonlinear Opt (1)

G. Knopfle, R. Schlesser, R. Ducret, and P. Gunter, “Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt 9, 143 (1995).

Opt. Express (3)

Opt. Lett. (7)

Other (3)

S. Russell, M. J. Missey, P. Powers, and K. Schepler,S. Brueck, R. Fields, M. Fejer, and F. Leonberger, eds., “Periodically poled lithium niobate with a 20° fan angle for continuous OPG tuning,” in Conference on Lasers and Electro-Optics, S. Brueck, R. Fields, M. Fejer, and F. Leonberger, eds., OSA Technical Digest (Optical Society of America, 2000), paper CFN6.

K. Nawata, Y. Miyake, S. Hayashi, T. Notake, H. Kawamata, T. Matsukawa, F. Qi, and H. Minamide, “Study of efficient optical parametric generation in KTP crystal as pump source for DAST-DFG,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.52.

E. Hérault, S. Forget, G. Lucas-Leclin, and P. Georges, “Continuously tunable visible compact laser source using optical parametric generation in microlaser-pumped periodically poled lithium niobate,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 339.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Multi-grating QPM temperature tuned signal and idler range for PPLN.
Fig. 2
Fig. 2 Fan out grating period and quasi-phase matched signal range for PPLN with temperature tuning variations.
Fig. 3
Fig. 3 DAST DFG efficiency, η, versus frequency and polarization angle. η is defined in Eq. (4) and the absorption was neglected. The red color denotes good phase matching regions.
Fig. 4
Fig. 4 Power output of DAST DFG as a function of combined OPA polarization angle and difference frequency.
Fig. 5
Fig. 5 Experimental setup used to generate a narrowband THz wave. The dual injection seeded OPG is mixed in the DFG crystal DAST.
Fig. 6
Fig. 6 Comparison of measured DFG system transmission with the known THz transmission spectrum in air for a 3 m path length at STP. No background corrections were made to the measured signal data.
Fig. 7
Fig. 7 Generated THz transmission spectrum from 1 THz to 27 THz. The data is presented without background correction and plotted using five different scans with partially overlapping scanning ranges and different filter combinations. The data was continuously recorded as the fan out MgO:PPLN crystal was tuned and scanned across the desired spectrum at a 3.1 GHz linewidth.
Fig. 8
Fig. 8 Power output of DFG DAST. (a) Modeled DFG power as a function of polarization angle and frequency. (b) Measured DFG signal as a function of polarization angle and frequency. No background correction was performed and the data was recorded in increments of ∆λ = 0.15 nm.
Fig. 9
Fig. 9 Output power from DAST DFG. (a) Modeled output power as a function of OPG power and frequency. (b) Measured output power as a function of OPG power and frequency with no background corrections made and the data was taken at increments in Δλ = 0.15 nm.
Fig. 10
Fig. 10 Transmission spectrum using a single IR filter placed after the DAST crystal without background correction. The spectrum is a compilation of four different scans.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δk= k p k s k i 2π Λ =2π( n e ( λ p ,T) λ p n e ( λ s ,T) λ s n e ( λ i ,T) λ i 1 Λ ),
P THz =S e α THz L (η),
S=32 ( μ 0 ε 0 ) 1 2 ( 2 ω THz d eff L ( n e ( λ s1 ,θ)+1)( n e ( λ s2 ,θ)+1)( n e ( λ THz ,θ)+1) ) 2 ( 1 c 2 )( P ω s1 P ω s2 A ),
η=( 1+ e (ΔαL) 2 e ( 1 2 ΔαL) cos(ΔkL) (ΔkL) 2 + ( 1 2 ΔαL) 2 ),
Δk= k s1 k s2 k THz =2π( n e ( λ s1 ,θ) λ s1 n e ( λ s2 ,θ) λ s2 n e THz ( λ THz ,θ) λ THz ),
Δα= α 1 α 2 α THz .
[ d 11 d 12 d 13 0 d 15 0 0 0 0 d 24 0 d 26 d 31 d 32 d 33 0 d 35 0 ].
P( ω THz = ω S 1 ω S 2 )=2 ε 0 [ d 11 d 12 d 13 0 d 15 0 0 0 0 d 24 0 d 26 d 31 d 32 d 33 0 d 35 0 ][ A a ( ω S 1 ) A a * ( ω S 2 ) A b ( ω S 1 ) A b * ( ω S 2 ) 0 0 0 A a ( ω S 1 ) A b * ( ω S 2 )+ A b ( ω S 1 ) A a * ( ω S 2 ) ].
A S 1 = S 2 e ^ = A S 1 = S 2 [cos(θ+ρ) a ^ +sin(θ+ρ) b ^ ].
1 n e 2 (θ) = cos 2 (θ) n a 2 + sin 2 (θ) n b 2 ,

Metrics