Abstract

Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This work reports titanium dioxide (TiO2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectric breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells

Po-Yuan Chen, Hui-Hsin Hsiao, Chung-I Ho, Chi-Chih Ho, Wei-Li Lee, Hung-Chun Chang, Si-Chen Lee, Jian-Zhang Chen, and I-Chun Cheng
Opt. Express 22(S4) A1128-A1136 (2014)

Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact

Eunkyo Byun, Jaeyoung Seo, Donghwan Kim, and Jihyun Kim
Opt. Express 26(18) 23594-23601 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Shah, Thin Film Silicon Solar Cells (CRC Press, 2010).
  2. A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
    [Crossref]
  3. J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy slkar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett. 70(22), 2975–2977 (1997).
    [Crossref]
  4. Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
    [Crossref]
  5. M. Goetz, H. Keppner, P. Pernet, W. Hotz, and A. Shah, “Contamination problems of amorphous silicon n-i-p solar cells on metal substrates,” Mat. Res. Soc. Sym. P. (1996).
  6. J. Wohlgemuth, “IEC 612615: What it is and isn't,” in 2012 PV Module Reliability Workshop (NREL, 2012).
  7. P. Grosse, R. Herling, and T. Muggenburg, “Design of low-e systems based on three layer coating,” J. Non-Cryst. Solids 218, 38–43 (1997).
    [Crossref]
  8. J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
    [Crossref]
  9. O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back reflector for thin film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
    [Crossref]
  10. B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).
  11. B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
    [Crossref]
  12. J. Meier, U. Kroll, and A. Buchel, “Back contact and back reflector for thin film silicon solar cells,” (US20050172997, 2005).
  13. V. Hagemann, M. Bockmeyer, P. Lechner, and M. Berginski, “Solar cell with an improved pigmented dielectric reflector,” (US20110259419, 2011).
  14. B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).
  15. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
    [Crossref]
  16. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE T. Electron Dev. ED 29(2), 300–305 (1982).
    [Crossref]
  17. M. J. Sailor, Porous Silicon in Practice (Wiley-VCH Verlag & Co, 2012).
  18. H. G. Volz, Industrial Color Testing: Fundamentals and Techniques (Wiley-VCH Verlag GmbH, 2001).
  19. B. Bills, N. Morris, Q. H. Fan, D. Mukul, and D. Galipeau, “Nanoparticle films for use as solar cell back reflectors and other applications,” (WO2014110602, 2014).

2011 (1)

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

2010 (3)

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

2007 (1)

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back reflector for thin film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

2004 (1)

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

1999 (1)

J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

1998 (1)

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[Crossref]

1997 (2)

J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy slkar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett. 70(22), 2975–2977 (1997).
[Crossref]

P. Grosse, R. Herling, and T. Muggenburg, “Design of low-e systems based on three layer coating,” J. Non-Cryst. Solids 218, 38–43 (1997).
[Crossref]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE T. Electron Dev. ED 29(2), 300–305 (1982).
[Crossref]

Aberle, A. G.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back reflector for thin film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Adiga, N.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Alberi, K.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Anecek, M.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Banerjee, A.

J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy slkar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett. 70(22), 2975–2977 (1997).
[Crossref]

Barnett, A.

J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Berger, O.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back reflector for thin film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Branz, H. M.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Cao, X.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Chen, C.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Chuang, T.-K.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE T. Electron Dev. ED 29(2), 300–305 (1982).
[Crossref]

Cotter, J.

J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Cotter, J. E.

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[Crossref]

Couillard, J. G.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Deng, X.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Droz, C.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Du, W.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Fan, Q.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Fay, S.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Fischer, D.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Grosse, P.

P. Grosse, R. Herling, and T. Muggenburg, “Design of low-e systems based on three layer coating,” J. Non-Cryst. Solids 218, 38–43 (1997).
[Crossref]

Guha, S.

J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy slkar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett. 70(22), 2975–2977 (1997).
[Crossref]

Guillet, J.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Hall, R.

J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Herling, R.

P. Grosse, R. Herling, and T. Muggenburg, “Design of low-e systems based on three layer coating,” J. Non-Cryst. Solids 218, 38–43 (1997).
[Crossref]

Hu, Z.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Ingler, W.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Inns, D.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back reflector for thin film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Isabella, L.

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Isabella, O.

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

Krc, J.

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Lee, B. G.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Liao, X.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Lipovsek, B.

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Mauk, M.

J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Meier, J.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Meillaud, F.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Muggenburg, T.

P. Grosse, R. Herling, and T. Muggenburg, “Design of low-e systems based on three layer coating,” J. Non-Cryst. Solids 218, 38–43 (1997).
[Crossref]

Niquille, X.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Shah, A.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Stradins, P.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Terrazzoni-Daudrix, V.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Topic, M.

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

Vallat-Sauvain, E.

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

Xiang, X.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE T. Electron Dev. ED 29(2), 300–305 (1982).
[Crossref]

Yang, J.

J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy slkar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett. 70(22), 2975–2977 (1997).
[Crossref]

Young, D. L.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

Zeman, M.

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

Zhang, S.

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Appl. Phys. Lett. (2)

J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy slkar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett. 70(22), 2975–2977 (1997).
[Crossref]

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064104 (2011).

IEEE T. Electron Dev. ED (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE T. Electron Dev. ED 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (2)

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[Crossref]

B. Lipovsek, J. Krc, L. Isabella, M. Zeman, and M. Topic, “Modeling and optimization of white paint back reflectors for thin film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

J. Non-Cryst. Solids (2)

A. Shah, M. Anecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, and V. Terrazzoni-Daudrix, “Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, uc-Si:H and micromorph tandem solar cells,” J. Non-Cryst. Solids 338-340, 639–645 (2004).
[Crossref]

P. Grosse, R. Herling, and T. Muggenburg, “Design of low-e systems based on three layer coating,” J. Non-Cryst. Solids 218, 38–43 (1997).
[Crossref]

Phys. Status Solidi C (1)

B. Lipovsek, J. Krc, O. Isabella, M. Zeman, and M. Topic, “Analysis of thin film silicon solar cells with white paint back reflectors,” Phys. Status Solidi C 7, 1041–1044 (2010).

Prog. Photovolt. Res. Appl. (1)

J. Cotter, R. Hall, M. Mauk, and A. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back reflector for thin film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Q. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, “High efficiency silicon-germanium thin film solar cells using graded absorber layer,” Sol. Energy Mater. Sol. Cells 94(7), 1300–1302 (2010).
[Crossref]

Other (8)

M. Goetz, H. Keppner, P. Pernet, W. Hotz, and A. Shah, “Contamination problems of amorphous silicon n-i-p solar cells on metal substrates,” Mat. Res. Soc. Sym. P. (1996).

J. Wohlgemuth, “IEC 612615: What it is and isn't,” in 2012 PV Module Reliability Workshop (NREL, 2012).

A. Shah, Thin Film Silicon Solar Cells (CRC Press, 2010).

J. Meier, U. Kroll, and A. Buchel, “Back contact and back reflector for thin film silicon solar cells,” (US20050172997, 2005).

V. Hagemann, M. Bockmeyer, P. Lechner, and M. Berginski, “Solar cell with an improved pigmented dielectric reflector,” (US20110259419, 2011).

M. J. Sailor, Porous Silicon in Practice (Wiley-VCH Verlag & Co, 2012).

H. G. Volz, Industrial Color Testing: Fundamentals and Techniques (Wiley-VCH Verlag GmbH, 2001).

B. Bills, N. Morris, Q. H. Fan, D. Mukul, and D. Galipeau, “Nanoparticle films for use as solar cell back reflectors and other applications,” (WO2014110602, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Ray-tracing schematic of pigment-based back reflector.
Fig. 2
Fig. 2 SEM images of (a) top-down and (b) cross-section of typical 410 nm TiO2 nanoparticle-based back reflector film for 20 second deposition time.
Fig. 3
Fig. 3 Diffuse reflection of pigment-based (TiO2 nanoparticle) back reflector with increasing deposition times and subsequently thickness. Arrow indicates increasing deposition times and thickness. Inset shows average film thickness (■) and deposition rate (▲) for each deposition time.
Fig. 4
Fig. 4 (top) Total and (bottom) diffuse reflection comparison of pigment-based (TiO2 nanoparticles) back reflector (BR) with conventional silver (Ag) and aluminum (Al) BRs with zinc oxide (ZnO) buffer layer and bare stainless steel (SS) substrate.
Fig. 5
Fig. 5 Current-voltage curves of single-junction amorphous Si semi-transparent solar cell without back reflector (BR) and with conventional silver (Ag) and aluminum (Al) BRs with zinc oxide (ZnO) buffer layer and pigment-based (TiO2 nanoparticles) BR. Table inset shows short-circuit current density (JSC), open- circuit voltage (VOC), fill factor (FF), and efficiency (η) solar cell parameters.
Fig. 6
Fig. 6 (a) Photograph of pigment-based (TiO2 nanoparticle) film with electrical discharge vias aperiodically distributed across film with about 1 mm spacing and (b) SEM image of single hole with approximately 80 µm diameter. (c) SEM image of hole in pigment-based film filled in with ITO nanoparticles and (d) diffuse reflection of pigment-based film with and without ITO nanoparticle filled holes.
Fig. 7
Fig. 7 Photographs demonstrating mechanical properties of pigment-based (TiO2 nanoparticle) back reflector films with (a) scotch tape adhesion test and (b) flexing of film on flexible substrate
Fig. 8
Fig. 8 Photographs demonstrating (a) continuous deposition roll-to-roll EPD system capable of handling 4 inch wide and 300 feet long metal web substrates and (b) large scale (6 feet long) pigment-based back reflector film held by researchers Bills and Fan.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Z=4 n abs n abs + n abs 2 n BR 2 n BR 2
R Bulk =1+ K S K S ( K S +2 )
D opt ( nm ) 2λ( nm ) π n m ( n p n m 1 )

Metrics