Abstract

We propose a modified gain-guided index-antiguided (GGIAG) fiber structure for large mode area laser amplifiers, in which a thin dielectric layer is placed between the low-index core and the high-index cladding. The introduced dielectric layer functions as a Fabry-Perot etalon. By letting the resonant wavelength of the Fabry-Perot layer coincide with the signal wavelength, the signal is gain-guided in the fiber core. Moreover, the pump is confined in the low-index core owing to the antiresonant reflection originated from the Fabry-Perot layer. Numerical results indicate that the leakage loss of the pump can be minified over two orders of magnitude in the proposed structure, and thus the end-pumping efficiency could be enhanced significantly.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power coupling between gain-guided index-antiguided planar waveguides

Chih-Hsien Lai and Chang-I Hsieh
Opt. Express 24(24) 28026-28038 (2016)

Transverse mode competition in gain-guided index antiguided fiber lasers

Xiangru Wang, Ying Chen, William Hageman, Gyu Ug Kim, Martin Richardson, Caidong Xiong, John Ballato, and Michael Bass
J. Opt. Soc. Am. B 29(2) 191-196 (2012)

Gain guiding in large-core Bragg fibers

Xianyu Ao, Tsing-Hua Her, and Lee W. Casperson
Opt. Express 17(25) 22666-22672 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “Higher power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [Crossref] [PubMed]
  4. C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [Crossref]
  5. L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm2,” Opt. Express 14(24), 11512–11519 (2006).
    [Crossref] [PubMed]
  6. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [Crossref] [PubMed]
  7. C. H. Liu, G. Chang, N. Litchnitser, and A. Galvanauskas, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD), paper ME2 (2007).
  8. X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  9. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
    [Crossref]
  10. A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), 1617–1628 (2003).
    [Crossref] [PubMed]
  11. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007).
    [Crossref]
  12. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
    [Crossref] [PubMed]
  13. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
    [Crossref]
  14. X. Ao, T.-H. Her, and L. W. Casperson, “Gain guiding in large-core Bragg fibers,” Opt. Express 17(25), 22666–22672 (2009).
    [Crossref] [PubMed]
  15. N.-K. Chen and L.-J. Jian, “Core-pumped gain-guided index-antiguided continuous wave lasing in dispersion-engineered erbium-doped fiber,” Opt. Lett. 37(15), 3057–3059 (2012).
    [Crossref] [PubMed]
  16. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [Crossref]
  17. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides–numerical results and analytical expressions,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
    [Crossref]
  18. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  19. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  20. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
    [Crossref] [PubMed]
  21. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  22. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [PubMed]
  23. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  24. C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photon. Technol. Lett. 24(11), 894–896 (2012).
    [Crossref]
  25. W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15(6), 363–369 (1997).
    [Crossref]
  26. C.-H. Lai, J.-Y. Lu, and H.-C. Chang, “Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra,” J. Opt. Soc. Am. B 28(9), 2200–2206 (2011).
    [Crossref]
  27. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
    [Crossref] [PubMed]
  28. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
    [Crossref] [PubMed]
  29. D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
    [Crossref]
  30. C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci Rep 4, 6057 (2014).
    [Crossref] [PubMed]

2014 (2)

X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci Rep 4, 6057 (2014).
[Crossref] [PubMed]

2013 (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (3)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

N.-K. Chen and L.-J. Jian, “Core-pumped gain-guided index-antiguided continuous wave lasing in dispersion-engineered erbium-doped fiber,” Opt. Lett. 37(15), 3057–3059 (2012).
[Crossref] [PubMed]

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photon. Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (3)

2008 (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

2007 (2)

2006 (3)

2005 (1)

2004 (1)

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

2003 (2)

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

1997 (1)

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15(6), 363–369 (1997).
[Crossref]

1992 (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides–numerical results and analytical expressions,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[Crossref]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Abeeluck, A. K.

Ao, X.

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides–numerical results and analytical expressions,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[Crossref]

Ballato, J.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Bang, O.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci Rep 4, 6057 (2014).
[Crossref] [PubMed]

Bass, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Birks, T. A.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Casperson, L. W.

Chang, H.-C.

Chen, H.-W.

Chen, N.-K.

Chen, Y.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Chew, W. C.

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15(6), 363–369 (1997).
[Crossref]

Chiou, Y.-P.

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photon. Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

Clarkson, W. A.

Couny, F.

de Sterke, C. M.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Dong, L.

Du, C.-H.

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photon. Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Dunn, S. C.

Eggleton, B. J.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Ermeneux, S.

Fermann, M. E.

Fink, Y.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

Fu, L.

Galvanauskas, A.

Gibson, D. J.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

Granzow, N.

Harrington, J. A.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

Hart, S. D.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

Headley, C.

Her, T.-H.

Hsueh, Y.-C.

Hu, I.-N.

Huang, Y.-J.

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Jian, L.-J.

Jin, J. M.

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15(6), 363–369 (1997).
[Crossref]

Joannopoulos, J. D.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

Kaplan, A.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides–numerical results and analytical expressions,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kubat, I.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci Rep 4, 6057 (2014).
[Crossref] [PubMed]

Lai, C.-H.

Li, J.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[Crossref] [PubMed]

Litchinitser, N. M.

Liu, T.-A.

Lu, J.-Y.

Ma, X.

Mangan, B. J.

Marcinkevicius, A.

Markos, C.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci Rep 4, 6057 (2014).
[Crossref] [PubMed]

Maskaly, G. R.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

McComb, T.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

McKay, H. A.

McPhedran, R. C.

Michielssen, E.

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15(6), 363–369 (1997).
[Crossref]

Nilsson, J.

Ohta, M.

Otto, H.-J.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Peng, J.-L.

Peng, X.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Prideaux, P. H.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

Richardson, D. J.

Richardson, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Roberts, P. J.

Röser, F.

Rothhardt, J.

Russell, P. St. J.

Sabert, H.

Salin, F.

Schmidt, M. A.

Schmidt, O.

Schreiber, T.

Siegman, A. E.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007).
[Crossref]

A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), 1617–1628 (2003).
[Crossref] [PubMed]

Stark, S. P.

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Sudesh, V.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

Sun, C.-K.

Suzuki, S.

Temelkuran, B.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Tünnermann, A.

Tverjanovich, A. S.

Usner, B.

Wadsworth, W. J.

White, T. P.

Williams, D. P.

Wondraczek, L.

You, B.

Yvernault, P.

Zhu, C.

Appl. Phys. B (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Appl. Phys. Lett. (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides–numerical results and analytical expressions,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photon. Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

J. Appl. Phys. (1)

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), 1–5 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 15(6), 363–369 (1997).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (9)

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[Crossref] [PubMed]

X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm2,” Opt. Express 14(24), 11512–11519 (2006).
[Crossref] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[Crossref] [PubMed]

X. Ao, T.-H. Her, and L. W. Casperson, “Gain guiding in large-core Bragg fibers,” Opt. Express 17(25), 22666–22672 (2009).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci Rep (1)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci Rep 4, 6057 (2014).
[Crossref] [PubMed]

Science (1)

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[Crossref] [PubMed]

Other (2)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

C. H. Liu, G. Chang, N. Litchnitser, and A. Galvanauskas, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD), paper ME2 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Cross-section and (b) index profile of the proposed FP-GGIAG fiber (not to scale).
Fig. 2
Fig. 2 Loss spectra of the LP01 mode of the FP-GGIAG fiber for different thicknesses of the FP layer. IAG represents the case where the FP layer is absent. The signal wavelength is 1.055 μm and the pump wavelength is 0.803 μm.
Fig. 3
Fig. 3 Radial field distributions for the IAG fiber and the FP-GGIAG fiber (with tFP = 0.68 μm). (a) Signal. (b) Pump. Inset in (a) shows the field distribution inside the FP layer for the signal.
Fig. 4
Fig. 4 Losses of the LP01 mode for the FP-GGIAG fiber with different tFP values. Results with tFP = 0 correspond to the IAG case.
Fig. 5
Fig. 5 (a) Phases of the pump ϕpump in the FP layer. (b) Decimal part of ϕpump /π. The range below 0.1 and above 0.9 is the near-resonant region, and the range between 0.4 and 0.6 is the antiresonant region. (c) Losses of the pump for the FP-GGIAG fiber. The dashed line represents the pump loss for the IAG case (tFP = 0).
Fig. 6
Fig. 6 Loss of the pump for the FP-GGIAG fiber as a function of refractive index of the FP layer. The dashed line represents the pump loss for the IAG case.
Fig. 7
Fig. 7 (a) Modal gain coefficients and (b) radial field distributions of the LP01 mode of the signal for the GGIAG fiber (without the FP layer) and the FP-GGIAG fiber. Inset: the field distribution inside the FP layer.
Fig. 8
Fig. 8 Losses of the LP01 and LP11 modes of the signal for the FP-GGIAG fiber. Results with tFP = 0 correspond to the GGIAG case.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ r = 2 t FP n FP 2 n co 2 m , m=1,2,3,,
t FP = m λ signal 2 n FP 2 n co 2 , m=1,2,3,.
[ P rr P rφ P φr P φφ ][ E r E φ ]= β 2 [ E r E φ ],
ϕ= 2π n FP 2 n co 2 λ t FP ,
ϕ pump = 2π n FP 2 n co 2 λ pump t FP .
m0.1 ϕ pump π m+0.1, m=1,2,3,.
m0.6 ϕ pump π m0.4, m=1,2,3,.

Metrics