Abstract

We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror

Xiaoxi Jin, Xiong Wang, Xiaolin Wang, and Pu Zhou
Appl. Opt. 54(28) 8260-8264 (2015)

Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper

Yazhou Wang, Jianfeng Li, Bo Zhai, Yunxiao Hu, Kundong Mo, Rongguo Lu, and Yong Liu
Opt. Express 24(14) 15299-15306 (2016)

Switchable multi-wavelength Tm-doped mode-locked fiber laser

Zhiyu Yan, Yulong Tang, Biao Sun, Tao Liu, Xiaohui Li, Perry Shum Ping, Xia Yu, Ying Zhang, and Qi Jie Wang
Opt. Lett. 40(9) 1916-1919 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. W. Xu and Z. X. Zhang, “All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
    [Crossref]
  2. X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
    [Crossref]
  3. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  4. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
    [Crossref] [PubMed]
  5. A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
    [Crossref]
  6. S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
    [Crossref]
  7. X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
    [Crossref] [PubMed]
  8. Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
    [Crossref]
  9. S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
    [Crossref]
  10. T. V. A. Tran, K. Lee, S. B. Lee, and Y. G. Han, “Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings,” Opt. Express 16(3), 1460–1465 (2008).
    [Crossref] [PubMed]
  11. W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
    [Crossref]
  12. X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
    [Crossref]
  13. X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
    [Crossref]
  14. Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
    [Crossref]
  15. X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
    [PubMed]
  16. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
    [Crossref]
  17. H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
    [Crossref]
  18. Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
    [Crossref]
  19. M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
    [Crossref]
  20. S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
    [Crossref]
  21. S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Wide-spectrally-tunable CW and femtosecond linear fiber lasers with ultrabroadband loop mirrors based on fiber circulators,” Laser Phys. 20(2), 347–350 (2010).
    [Crossref]
  22. C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
    [Crossref]
  23. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  24. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
    [Crossref]
  25. S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
    [Crossref]
  26. M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29(4), 409–411 (1993).
    [Crossref]
  27. D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
    [Crossref]
  28. L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
    [Crossref]

2014 (2)

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

2013 (4)

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Z. W. Xu and Z. X. Zhang, “All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
[PubMed]

2012 (4)

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

2011 (3)

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[Crossref]

2010 (5)

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Wide-spectrally-tunable CW and femtosecond linear fiber lasers with ultrabroadband loop mirrors based on fiber circulators,” Laser Phys. 20(2), 347–350 (2010).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
[Crossref]

2006 (2)

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[Crossref] [PubMed]

2005 (2)

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

1993 (1)

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29(4), 409–411 (1993).
[Crossref]

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

1983 (1)

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

An, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Cai, Z. P.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Chai, T. Y.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Chamorovskiy, A. Y.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29(4), 409–411 (1993).
[Crossref]

Duling, I. N.

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29(4), 409–411 (1993).
[Crossref]

Fang, Z.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Fedotov, Y. S.

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Wide-spectrally-tunable CW and femtosecond linear fiber lasers with ultrabroadband loop mirrors based on fiber circulators,” Laser Phys. 20(2), 347–350 (2010).
[Crossref]

Feng, T.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Feng, X.

Gao, C.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

Gong, Y. K.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Han, Y. G.

Hao, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Hu, X.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Hu, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Jiang, Y.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

Kobtsev, S.

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Wide-spectrally-tunable CW and femtosecond linear fiber lasers with ultrabroadband loop mirrors based on fiber circulators,” Laser Phys. 20(2), 347–350 (2010).
[Crossref]

Kukarin, S.

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Wide-spectrally-tunable CW and femtosecond linear fiber lasers with ultrabroadband loop mirrors based on fiber circulators,” Laser Phys. 20(2), 347–350 (2010).
[Crossref]

Kurkov, A. S.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Lee, K.

Lee, S. B.

Leong, E.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Li, C.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Li, Q.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Li, X.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Li, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, D.

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Liu, J.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Liu, L.

Liu, S.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Liu, X.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Liu, X. M.

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

Liu, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

Long, J. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Lou, C.

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Lu, C.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Lu, H.

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Lu, P.

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Luo, A.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Luo, A. P.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[Crossref]

Luo, Z.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Luo, Z. C.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[Crossref]

Luo, Z. Q.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Ma, H. F.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Mao, D.

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Marakulin, A. V.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Ng, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Okhotnikov, O. G.

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Pan, S.

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Peng, W.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Qian, L. J.

D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
[Crossref]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Shen, D.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

Shen, D. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Si, L.

Smirnov, S.

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

Sun, H. B.

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

Sun, M.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Tam, H. Y.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[Crossref] [PubMed]

Tan, S.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Tang, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Tran, T. V. A.

Turitsyn, S.

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

Wai, P. K. A.

Wang, H. S.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Wang, J. Z.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Wang, L. R.

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

Wang, S.

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

Wang, X.

Wang, X. L.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Wang, Y.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

Wang, Y. S.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Wu, J.

D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
[Crossref]

Wu, X.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

Xiao, H.

Xu, H. Y.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Xu, W.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Xu, W. C.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[Crossref]

Xu, Z. W.

Z. W. Xu and Z. X. Zhang, “All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

Yan, F.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Yang, W.

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

Yang, X.

Yang, Z.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Ye, C. C.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Ye, Q.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Yin, H.

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

Yu, J.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

Zhang, H.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

Zhang, J.

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Zhang, W.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Zhang, Y. N.

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Zhang, Z. X.

Z. W. Xu and Z. X. Zhang, “All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, S.

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Zhao, W.

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Zhao, X.

Zheng, Z.

Zhou, M.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Zhou, P.

Zhou, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Zhu, J.

Zhu, Y.

Appl. Phys. B (1)

S. Wang, P. Lu, S. Zhao, D. Liu, W. Yang, and J. Zhang, “2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect,” Appl. Phys. B 117(2), 563–569 (2014), doi:.
[Crossref]

Electron. Lett. (2)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29(4), 409–411 (1993).
[Crossref]

IEEE Photon. J. (3)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Hu, W. Zhao, X. Liu, J. Yu, C. Gao, W. Zhang, Z. Yang, C. Li, and D. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J. 4(1), 234–241 (2012).
[Crossref]

Z. Luo, A. Luo, W. Xu, H. Yin, J. Liu, Q. Ye, and Z. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photon. J. 2(4), 571–577 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005).
[Crossref]

Laser Phys. (3)

H. B. Sun, X. M. Liu, L. R. Wang, X. H. Li, and D. Mao, “Spacing-tunable multi-wavelength fiber laser based on cascaded four-wave mixing in highly nonlinear photonic-crystal fiber,” Laser Phys. 20(11), 1994–2000 (2010).
[Crossref]

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Wide-spectrally-tunable CW and femtosecond linear fiber lasers with ultrabroadband loop mirrors based on fiber circulators,” Laser Phys. 20(2), 347–350 (2010).
[Crossref]

X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, “All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter,” Laser Phys. 21(5), 940–944 (2011).
[Crossref]

Laser Phys. Lett. (5)

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett. 9(8), 602–606 (2012).
[Crossref]

Z. W. Xu and Z. X. Zhang, “All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Opt. Commun. (2)

D. Y. Tang, J. Wu, L. M. Zhao, and L. J. Qian, “Dynamic sideband generation in soliton fiber lasers,” Opt. Commun. 275(1), 213–216 (2007).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Y. Tam, “Observation of dip-type sidebands in a soliton fiber laser,” Opt. Commun. 283(2), 340–343 (2010).
[Crossref]

Opt. Eng. (2)

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, “Mode-locked fiber lasers with significant variability of generation regimes,” Opt. Fiber Technol. 20(6), 615–620 (2014).
[Crossref]

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Phys. Rev. Lett. (1)

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The setup and (b) the operating principle of tunable and switchable multiwavelength mode-locked Tm-doped fiber laser using nonlinear polarization evolution. LD: laser diode. WDM: wavelength-division multiplexer. PC: polarization controller. PDI: polarization-dependent isolator. SMF: Single-mode fiber.
Fig. 2
Fig. 2 (a) Spectrum, (b) pulse width and (c) RF spectrum of mode-locked single-wavelength laser at 1862 nm. (d) Tunable single-wavelength mode locking with tuning range from 1852 nm to 1886 nm.
Fig. 3
Fig. 3 Tunable dual-wavelength mode locking with the center wavelength of 1852/1862 nm, 1863/1874 nm, and 1874/1886 nm. A wide tuning range from 1852 nm to 1886 nm can be achieved.
Fig. 4
Fig. 4 (a) Switchable dual-wavelength mode locking at 1852 and 1862nm. (b) Pulse train of dual-wavelength mode locking.
Fig. 5
Fig. 5 (a) The simulation transmission spectrum with the wavelength from 1840 to 1900 nm. The solid curve θ 2 =π/4 , the dash curve θ 2 =π/ 18 . (b) The comparison between simulation and experimental results.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T= cos 2 θ 1 cos 2 θ 2 + sin 2 θ 1 sin 2 θ 2 + 1 2 sin(2 θ 1 )sin(2 θ 2 )cos(Δ φ L +Δ φ NL )
Δ φ L =2πL( n x n y )/λ
Δ φ NL =2π n 2 PLcos(2 θ 1 )/λ A eff
Δ(Δ φ L +Δ φ NL )=(Δ φ L1 +Δ φ NL1 )(Δ φ L2 +Δ φ NL2 )=2π
[ L( n x n y )+ n 2 PLcos(2 θ 1 )/ A eff ]( 1 λ 1 1 λ 2 )=1
Δf= c L( n x n y )+ n 2 PLcos(2 θ 1 )/ A eff

Metrics