Abstract

A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking

Jian Wang, Dijun Chen, Haiwen Cai, Fang Wei, and Ronghui Qu
Opt. Express 23(6) 7038-7043 (2015)

Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser

Wenting Diao, Jun He, Zhi Liu, Baodong Yang, and Junmin Wang
Opt. Express 20(7) 7480-7487 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
    [Crossref]
  2. N. Chiodo, K. Djerroud, O. Acef, A. Clairon, and P. Wolf, “Lasers for coherent optical satellite links with large dynamics,” Appl. Opt. 52(30), 7342–7351 (2013).
    [Crossref] [PubMed]
  3. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [Crossref] [PubMed]
  4. M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
    [Crossref]
  5. B. P. P. Kuo and S. Radic, “Fast wideband source tuning by extra-cavity parametric process,” Opt. Express 18(19), 19930–19940 (2010).
    [Crossref] [PubMed]
  6. E. Benkler, F. Rohde, and H. R. Telle, “Robust interferometric frequency lock between cw lasers and optical frequency combs,” Opt. Lett. 38(4), 555–557 (2013).
    [Crossref] [PubMed]
  7. F. Rohde, E. Benkler, T. Puppe, R. Unterreitmayer, A. Zach, and H. R. Telle, “Phase-predictable tuning of single-frequency optical synthesizers,” Opt. Lett. 39(14), 4080–4083 (2014).
    [Crossref] [PubMed]
  8. K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012).
    [Crossref] [PubMed]
  9. D. Gatti, T. Sala, A. Gambetta, N. Coluccelli, G. N. Conti, G. Galzerano, P. Laporta, and M. Marangoni, “Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb,” Opt. Express 20(22), 24880–24885 (2012).
    [PubMed]
  10. J. Biesheuvel, D. W. E. Noom, E. J. Salumbides, K. T. Sheridan, W. Ubachs, and J. C. J. Koelemeij, “Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset,” Opt. Express 21(12), 14008–14016 (2013).
    [Crossref] [PubMed]
  11. A. Kanno, S. Honda, R. Yamanaka, H. Sotobayashi, and T. Kawanishi, “Ultrafast and broadband frequency chirp signal generation using a high-extinction-ratio optical modulator,” Opt. Lett. 35(24), 4160–4162 (2010).
    [Crossref] [PubMed]
  12. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
    [Crossref]
  13. S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, “Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb,” Opt. Lett. 31(24), 3594–3596 (2006).
    [Crossref] [PubMed]
  14. D. W. Grund, S. Shi, G. J. Schneider, J. Murakowski, and D. W. Prather, “Improved configuration and reduction of phase noise in a narrow linewidth ultrawideband optical RF source,” Opt. Lett. 39(16), 4667–4670 (2014).
    [Crossref] [PubMed]
  15. W. Peng, L. Zhou, S. Long, J. Wang, and M. Zhan, “Locking laser frequency of up to 40 GHz offset to a reference with a 10 GHz electro-optic modulator,” Opt. Lett. 39(10), 2998–3001 (2014).
    [Crossref] [PubMed]
  16. J. Wang, Z. Li, Q. Wu, W. Wang, S. Jia, and J. Yu, “Tunable frequency upconversion based on a directly modulated DFB-LD and FP-LD injection,” Chin. Opt. Lett. 12(10), 100607 (2014).
    [Crossref]
  17. L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  18. H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
    [Crossref]
  19. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44(35), 7630–7634 (2005).
    [Crossref] [PubMed]
  20. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [Crossref] [PubMed]
  21. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]

2014 (4)

2013 (4)

2012 (2)

2010 (3)

2009 (2)

2006 (1)

2005 (2)

2002 (1)

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

1998 (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[Crossref]

1986 (1)

L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Acef, O.

Ahn, T.-J.

Babbitt, W. R.

Baney, D. M.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Barber, Z. W.

Beck, S. M.

Benkler, E.

Berg, T.

Biesheuvel, J.

Buck, J. R.

Buell, W. F.

Chen, J. R.

Chiodo, N.

Clairon, A.

Coluccelli, N.

Conti, G. N.

Dickinson, R. P.

Djerroud, K.

Galzerano, G.

Gambetta, A.

Gatti, D.

Gregory, M.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Grund, D. W.

Heine, F.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Honda, S.

Jia, S.

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[Crossref]

Kämpfner, H.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Kanno, A.

Kawanishi, T.

Kaylor, B.

Kim, D. Y.

Kim, E. B.

Koelemeij, J. C. J.

Kozlowski, D. A.

Kruger, M.

L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kuo, B. P. P.

Kwon, T. Y.

Lange, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Laporta, P.

Lee, J. Y.

Leyva, V.

Li, Z.

Long, S.

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[Crossref]

Mandelberg, H. I.

L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Marangoni, M.

Marechal, N. J.

McGrath, P.

L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Meyer, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Moon, H. S.

Motamedi, A.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Murakowski, J.

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Noom, D. W. E.

Numata, K.

Park, C. Y.

Park, S. E.

Park, Y. H.

Peng, W.

Prather, D. W.

D. W. Grund, S. Shi, G. J. Schneider, J. Murakowski, and D. W. Prather, “Improved configuration and reduction of phase noise in a narrow linewidth ultrawideband optical RF source,” Opt. Lett. 39(16), 4667–4670 (2014).
[Crossref] [PubMed]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Puppe, T.

Radic, S.

Rakuljic, G.

Reibel, R. R.

Richter, L.

L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Rohde, F.

Roos, P. A.

Sala, T.

Salumbides, E. J.

Satyan, N.

Saucke, K.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Schneider, G. J.

D. W. Grund, S. Shi, G. J. Schneider, J. Murakowski, and D. W. Prather, “Improved configuration and reduction of phase noise in a narrow linewidth ultrawideband optical RF source,” Opt. Lett. 39(16), 4667–4670 (2014).
[Crossref] [PubMed]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Sheridan, K. T.

Shi, S.

Shi, S. Y.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Sotobayashi, H.

Sterr, U.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Szafraniec, B.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Telle, H. R.

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[Crossref]

Ubachs, W.

Unterreitmayer, R.

Vasilyev, A.

Wang, J.

Wang, W.

Wolf, P.

Wright, T. J.

Wu, Q.

Wu, S. T.

Yamanaka, R.

Yariv, A.

Yee, D. S.

Yoon, T. H.

Yu, J.

Zach, A.

Zhan, M.

Zhou, L.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Nat. Photonics (1)

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Opt. Commun. (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

E. Benkler, F. Rohde, and H. R. Telle, “Robust interferometric frequency lock between cw lasers and optical frequency combs,” Opt. Lett. 38(4), 555–557 (2013).
[Crossref] [PubMed]

A. Kanno, S. Honda, R. Yamanaka, H. Sotobayashi, and T. Kawanishi, “Ultrafast and broadband frequency chirp signal generation using a high-extinction-ratio optical modulator,” Opt. Lett. 35(24), 4160–4162 (2010).
[Crossref] [PubMed]

W. Peng, L. Zhou, S. Long, J. Wang, and M. Zhan, “Locking laser frequency of up to 40 GHz offset to a reference with a 10 GHz electro-optic modulator,” Opt. Lett. 39(10), 2998–3001 (2014).
[Crossref] [PubMed]

F. Rohde, E. Benkler, T. Puppe, R. Unterreitmayer, A. Zach, and H. R. Telle, “Phase-predictable tuning of single-frequency optical synthesizers,” Opt. Lett. 39(14), 4080–4083 (2014).
[Crossref] [PubMed]

D. W. Grund, S. Shi, G. J. Schneider, J. Murakowski, and D. W. Prather, “Improved configuration and reduction of phase noise in a narrow linewidth ultrawideband optical RF source,” Opt. Lett. 39(16), 4667–4670 (2014).
[Crossref] [PubMed]

P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
[Crossref] [PubMed]

S. E. Park, E. B. Kim, Y. H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, “Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb,” Opt. Lett. 31(24), 3594–3596 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, U. Sterr, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75870E (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of linearized frequency swept laser source based on modulation-sideband injection-locking and its performance testing equipments. Callouts indicate the spectra at various points throughout the system. RIO: master laser; EOM: electro-optic modulator; VOA: variable optical attenuator; DFB LD: distributed feedback diode laser; RF: radio frequency; PS: power splitter; VCO: voltage controlled oscillator; LPF: loop filter; OSA: optical spectrum analyzer; SM fiber: single mode fiber; AOM: acousto-optic modulator; PD: photodetector; SA: spectrum analyzer; OSC: oscilloscope.
Fig. 2
Fig. 2 Optical spectra of the EOM output measured by optical spectrum analyzer with the RF signal of (a) 5.5 GHz and (b) 8.5 GHz respectively.
Fig. 3
Fig. 3 Experimentally measured optical spectra and linewidth of the injection-locked slave laser at 1st, 3rd, 5th order sideband.
Fig. 4
Fig. 4 (a) Instantaneous optical frequency changes as a function of time and the residual errors from a linear fit with 1st order sideband injection-locking, the insets are enlarged Fourier transforms of the interferometer outputs; (b) linewidth comparisons of the laser with linearized swept-frequency and fixed-frequency operation.
Fig. 5
Fig. 5 (a) Instantaneous optical frequency changes as a function of time and the residual errors from a linear fit with 5th order sideband injection-locking, the insets are enlarged Fourier transforms of the interferometer outputs; (b) linewidth comparisons of the laser with linearized swept-frequency and fixed-frequency operation.
Fig. 6
Fig. 6 Experimentally measured slave laser’s drive current and output power versus swept frequency with 5th order sideband injection-locking.
Fig. 7
Fig. 7 Settling time response for the laser frequency switching when the frequency synthesizer is set at (a) 5.5GHz and (b) 8.5GHz. Frequency amplitude is 10 MHz.

Metrics