Abstract

Coherent vector beams with involved states of polarization (SOP) are widespread in the literature, having applications in laser processing, super-resolution imaging and particle trapping. We report novel vector beams obtained by transforming a Gaussian beam passing through a biaxial crystal, by means of the conical refraction phenomenon. We analyze both experimentally and theoretically the SOP of the different vector beams generated and demonstrate that the SOP of the input beam can be used to control both the shape and the SOP of the transformed beam. We also identify polarization singularities of such beams for the first time and demonstrate their control by the SOP of the input beam.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transformation of vector beams with radial and azimuthal polarizations in biaxial crystals

A. Turpin, A. Vargas, A. Lizana, F. A. Torres-Ruiz, I. Estévez, I. Moreno, J. Campos, and J. Mompart
J. Opt. Soc. Am. A 32(5) 1012-1016 (2015)

Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon

Alba Peinado, Alex Turpin, Claudio Iemmi, Andrés Márquez, Todor K. Kalkandjiev, Jordi Mompart, and Juan Campos
Opt. Express 23(14) 18080-18091 (2015)

Wave-vector and polarization dependence of conical refraction

A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, H. Tomizawa, and J. Mompart
Opt. Express 21(4) 4503-4511 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express 21, 5424–5431 (2013).,
    [Crossref]
  3. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
    [Crossref] [PubMed]
  4. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863 (2010)
    [Crossref] [PubMed]
  5. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
    [Crossref]
  6. M. R. Dennis, K. O Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
    [Crossref]
  7. M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
    [Crossref]
  8. D. Kleckner and W. T. M. Irvine, “Creation and dynamics of knotted vortices,” Nature Phys. 9, 253–258 (2013).
    [Crossref]
  9. I. Freund, “Ordinary polarization singularities in three-dimensional optical fields,” Opt. Lett. 37, 2223–2225 (2012).
    [Crossref] [PubMed]
  10. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7 (expanded) ed. (Cambridge University Press, Cambridge, 1999).
    [Crossref]
  11. A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. (USSR) 44, 436–439 (1978).
  12. A. M. Belsky and M. A. Stepanov, “Internal conical refraction of coherent light beams,” Opt. Communs. 167, 1–5 (1999).
    [Crossref]
  13. M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
    [Crossref]
  14. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6289–300 (2004).
    [Crossref]
  15. T. K. Kalkandjiev and M. Bursukova, “The conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
    [Crossref]
  16. A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 214503–4511 (2013).
    [Crossref] [PubMed]
  17. A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Multiple rings formation in cascaded conical refraction,” Opt. Lett. 38, 1455–1457 (2013).
    [Crossref] [PubMed]
  18. G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov, “Conical Refraction: New observations and a dual cone model,” Opt. Express 21, 11125–11131 (2013).
    [Crossref] [PubMed]
  19. C. F. Phelan, J. F. Donegan, and J. G. Lunney, “Generation of a radially polarized light beam using internal conical diffraction,” Opt. Express 19, 21793–21802 (2011).
    [Crossref] [PubMed]
  20. V. Peet, “Improving directivity of laser beams by employing the effect of conical refraction in biaxial crystals,” Opt. Express 18, 19566–19573 (2010).
    [Crossref] [PubMed]
  21. Yu. V. Loiko, A. Turpin, T. K. Kalkandjiev, E. U. Rafailov, and J. Mompart, “Generating a three-dimensional dark focus from a single conically refracted light beam,” Opt. Lett. 38, 4648–4651 (2013).
    [Crossref] [PubMed]
  22. Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
    [Crossref]
  23. A. Turpin, Yu. V. Loiko, T. K. Kalkandkiev, H. Tomizawa, and J. Mompart, “Super-Gaussian conical refraction beam,” Opt. Lett. 39, 4349–4352 (2014).
    [Crossref] [PubMed]
  24. A. Peinado, A. Turpin, A. Lizana, E. Fernndez, J. Mompart, and J. Campos, “Conical refraction as a tool for polarization metrology,” Opt. Lett. 38, 4100–4103 (2013).
    [Crossref] [PubMed]
  25. A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.
  26. A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
    [Crossref] [PubMed]
  27. C. F. Phelan, D. P. ODwyer, Y. P. Rakovich, J. F. Donegan, and J. G. Lunney, “Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express 17, 12891–12899 (2009).
    [Crossref] [PubMed]
  28. V. Peet and D. Zolotukhin, “Free-space evolution of focused Gaussian beams transformed by conical diffraction in a biaxial crystal,” Opt. Commun. 2833011–3016 (2010).
    [Crossref]
  29. V. Peet, “The far-field structure of Gaussian light beams transformed by internal conical refraction in a biaxial crystal,” Opt. Commun. 311150–155 (2010).
    [Crossref]
  30. R. W. Schoonover and T. D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express 14, 5733–5745 (2006).
    [Crossref] [PubMed]
  31. R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am. 70, 877–880 (1980).
    [Crossref]
  32. G. M. Philip, V. Kumar, G. Milione, and N. K. Viswanathan, “Manifestation of the Gouy phase in vector-vortex beams,” Opt. Lett. 37, 2667–2669 (2012).
    [Crossref] [PubMed]
  33. D.P. ODwyer, C.F. Phelan, K.E. Ballantine, Y.P. Rakovich, J. G. Lunney, and J.F. Donegan, “Conical diffraction of linearly polarised light controls the angular position of a microscopic object,” Opt. Express 18, 27319–27326 (2009).
    [Crossref]
  34. V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).
  35. S. Rosen, G. Y. Sirat, H. Ilan, and A. J. Agranat, “A sub wavelength localization scheme in optical imaging using conical diffraction,” Opt. Express 21, 10133–10138 (2013).
    [Crossref] [PubMed]
  36. G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).
  37. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685 (2005).
    [Crossref]
  38. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincare beams,” Opt. Express 18, 10777–10785 (2010).
    [Crossref] [PubMed]
  39. V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12, 095706 (2010).
    [Crossref]
  40. Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
    [Crossref]
  41. G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
    [Crossref] [PubMed]
  42. R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
    [Crossref]

2014 (6)

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

A. Turpin, Yu. V. Loiko, T. K. Kalkandkiev, H. Tomizawa, and J. Mompart, “Super-Gaussian conical refraction beam,” Opt. Lett. 39, 4349–4352 (2014).
[Crossref] [PubMed]

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
[Crossref]

2013 (10)

S. Rosen, G. Y. Sirat, H. Ilan, and A. J. Agranat, “A sub wavelength localization scheme in optical imaging using conical diffraction,” Opt. Express 21, 10133–10138 (2013).
[Crossref] [PubMed]

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Yu. V. Loiko, A. Turpin, T. K. Kalkandjiev, E. U. Rafailov, and J. Mompart, “Generating a three-dimensional dark focus from a single conically refracted light beam,” Opt. Lett. 38, 4648–4651 (2013).
[Crossref] [PubMed]

A. Peinado, A. Turpin, A. Lizana, E. Fernndez, J. Mompart, and J. Campos, “Conical refraction as a tool for polarization metrology,” Opt. Lett. 38, 4100–4103 (2013).
[Crossref] [PubMed]

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express 21, 5424–5431 (2013).,
[Crossref]

D. Kleckner and W. T. M. Irvine, “Creation and dynamics of knotted vortices,” Nature Phys. 9, 253–258 (2013).
[Crossref]

A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 214503–4511 (2013).
[Crossref] [PubMed]

A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Multiple rings formation in cascaded conical refraction,” Opt. Lett. 38, 1455–1457 (2013).
[Crossref] [PubMed]

G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov, “Conical Refraction: New observations and a dual cone model,” Opt. Express 21, 11125–11131 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (7)

V. Peet, “Improving directivity of laser beams by employing the effect of conical refraction in biaxial crystals,” Opt. Express 18, 19566–19573 (2010).
[Crossref] [PubMed]

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863 (2010)
[Crossref] [PubMed]

V. Peet and D. Zolotukhin, “Free-space evolution of focused Gaussian beams transformed by conical diffraction in a biaxial crystal,” Opt. Commun. 2833011–3016 (2010).
[Crossref]

V. Peet, “The far-field structure of Gaussian light beams transformed by internal conical refraction in a biaxial crystal,” Opt. Commun. 311150–155 (2010).
[Crossref]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincare beams,” Opt. Express 18, 10777–10785 (2010).
[Crossref] [PubMed]

V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12, 095706 (2010).
[Crossref]

2009 (4)

2008 (1)

T. K. Kalkandjiev and M. Bursukova, “The conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685 (2005).
[Crossref]

2004 (1)

M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6289–300 (2004).
[Crossref]

1999 (1)

A. M. Belsky and M. A. Stepanov, “Internal conical refraction of coherent light beams,” Opt. Communs. 167, 1–5 (1999).
[Crossref]

1980 (1)

1978 (1)

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. (USSR) 44, 436–439 (1978).

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

Agranat, A. J.

Ahufinger, V.

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Alonso, M. A.

Ballantine, K.E.

Beckley, A. M.

Belskii, A. M.

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. (USSR) 44, 436–439 (1978).

Belsky, A. M.

A. M. Belsky and M. A. Stepanov, “Internal conical refraction of coherent light beams,” Opt. Communs. 167, 1–5 (1999).
[Crossref]

Berry, M. V.

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685 (2005).
[Crossref]

M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6289–300 (2004).
[Crossref]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

Birk, G.

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

Birkl, G.

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7 (expanded) ed. (Cambridge University Press, Cambridge, 1999).
[Crossref]

Boyd, R. W.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am. 70, 877–880 (1980).
[Crossref]

Braitbart, L.P.O.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Brasselet, E.

Brown, T. G.

Bursukova, M.

T. K. Kalkandjiev and M. Bursukova, “The conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

Campos, J.

Carnegie, D.

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

Carnegie, D. J.

Carnicer, A.

Caron, J.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Corkum, P. B.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

Davoyan, A. R.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).

Dennis, M. R.

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

M. R. Dennis, K. O Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Desyatnikov, A.

Ding, J.

Donegan, J. F.

Donegan, J.F.

Engheta, N.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).

Fadeyeva, T. A.

Fallet, C.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Fernndez, E.

Fickler, R.

R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
[Crossref]

Freund, I.

Frumker, E.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

Gariepy, G.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

Guo, C.-S.

Hammond, T. J.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

Hnatovsky, C.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

Holleran, K. O

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

M. R. Dennis, K. O Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Ilan, H.

Irvine, W. T. M.

D. Kleckner and W. T. M. Irvine, “Creation and dynamics of knotted vortices,” Nature Phys. 9, 253–258 (2013).
[Crossref]

Izdebskaya, Y. V.

Jack, B.

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

Jeffrey, M. R.

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685 (2005).
[Crossref]

Juvells, I.

Kalkandjiev, T. K.

Kalkandkiev, T. K.

Khapalyuk, A. P.

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. (USSR) 44, 436–439 (1978).

Kim, K. T.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

King, R. P.

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

Kivshar, Y. S.

Kleckner, D.

D. Kleckner and W. T. M. Irvine, “Creation and dynamics of knotted vortices,” Nature Phys. 9, 253–258 (2013).
[Crossref]

Krolikowski, W.

Küber, J.

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Kumar, V.

LApkiewicz, R.

R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
[Crossref]

Leach, J.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

Lizana, A.

Loiko, Y. V.

Loiko, Yu. V.

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

A. Turpin, Yu. V. Loiko, T. K. Kalkandkiev, H. Tomizawa, and J. Mompart, “Super-Gaussian conical refraction beam,” Opt. Lett. 39, 4349–4352 (2014).
[Crossref] [PubMed]

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

Yu. V. Loiko, A. Turpin, T. K. Kalkandjiev, E. U. Rafailov, and J. Mompart, “Generating a three-dimensional dark focus from a single conically refracted light beam,” Opt. Lett. 38, 4648–4651 (2013).
[Crossref] [PubMed]

A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 214503–4511 (2013).
[Crossref] [PubMed]

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Lunney, J. G.

Maluenda, D.

Mansuripur, M.

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685 (2005).
[Crossref]

Martínez-Herrero, R.

Menchon-Enrich, R.

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

Milione, G.

Moisan, L.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Mompart, J.

A. Turpin, Yu. V. Loiko, T. K. Kalkandkiev, H. Tomizawa, and J. Mompart, “Super-Gaussian conical refraction beam,” Opt. Lett. 39, 4349–4352 (2014).
[Crossref] [PubMed]

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Multiple rings formation in cascaded conical refraction,” Opt. Lett. 38, 1455–1457 (2013).
[Crossref] [PubMed]

A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 214503–4511 (2013).
[Crossref] [PubMed]

A. Peinado, A. Turpin, A. Lizana, E. Fernndez, J. Mompart, and J. Campos, “Conical refraction as a tool for polarization metrology,” Opt. Lett. 38, 4100–4103 (2013).
[Crossref] [PubMed]

Yu. V. Loiko, A. Turpin, T. K. Kalkandjiev, E. U. Rafailov, and J. Mompart, “Generating a three-dimensional dark focus from a single conically refracted light beam,” Opt. Lett. 38, 4648–4651 (2013).
[Crossref] [PubMed]

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Neshev, D. N.

Ni, W.-J.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

ODwyer, D. P.

ODwyer, D.P.

Padgett, M. J.

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

M. R. Dennis, K. O Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Peet, V.

V. Peet, “Improving directivity of laser beams by employing the effect of conical refraction in biaxial crystals,” Opt. Express 18, 19566–19573 (2010).
[Crossref] [PubMed]

V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12, 095706 (2010).
[Crossref]

V. Peet, “The far-field structure of Gaussian light beams transformed by internal conical refraction in a biaxial crystal,” Opt. Commun. 311150–155 (2010).
[Crossref]

V. Peet and D. Zolotukhin, “Free-space evolution of focused Gaussian beams transformed by conical diffraction in a biaxial crystal,” Opt. Commun. 2833011–3016 (2010).
[Crossref]

Peinado, A.

Phelan, C. F.

Phelan, C.F.

Philip, G. M.

Polo, J.

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Rafailov, E. U.

Rafailov, Edik U.

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

Rakovich, Y. P.

Rakovich, Y.P.

Ramelow, S.

R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
[Crossref]

Rosen, S.

Schmaltz, F.

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Schoonover, R. W.

Shorte, S.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Shvedov, V.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

Shvedov, V. G.

Sirat, G. Y.

Sirat, G.Y.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Sokolovskii, G. S.

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov, “Conical Refraction: New observations and a dual cone model,” Opt. Express 21, 11125–11131 (2013).
[Crossref] [PubMed]

Stepanov, M. A.

A. M. Belsky and M. A. Stepanov, “Internal conical refraction of coherent light beams,” Opt. Communs. 167, 1–5 (1999).
[Crossref]

Tinevez, J.Y.

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Tomizawa, H.

Turpin, A.

A. Turpin, Yu. V. Loiko, T. K. Kalkandkiev, H. Tomizawa, and J. Mompart, “Super-Gaussian conical refraction beam,” Opt. Lett. 39, 4349–4352 (2014).
[Crossref] [PubMed]

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

Yu. V. Loiko, A. Turpin, T. K. Kalkandjiev, E. U. Rafailov, and J. Mompart, “Generating a three-dimensional dark focus from a single conically refracted light beam,” Opt. Lett. 38, 4648–4651 (2013).
[Crossref] [PubMed]

A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Multiple rings formation in cascaded conical refraction,” Opt. Lett. 38, 1455–1457 (2013).
[Crossref] [PubMed]

A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 214503–4511 (2013).
[Crossref] [PubMed]

A. Peinado, A. Turpin, A. Lizana, E. Fernndez, J. Mompart, and J. Campos, “Conical refraction as a tool for polarization metrology,” Opt. Lett. 38, 4100–4103 (2013).
[Crossref] [PubMed]

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Visser, T. D.

Viswanathan, N. K.

Volyar, A. V.

Wang, H-T.

Wang, X.-L.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7 (expanded) ed. (Cambridge University Press, Cambridge, 1999).
[Crossref]

Zeilinger, A.

R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
[Crossref]

Zhan, Q.

Zolotukhin, D.

V. Peet and D. Zolotukhin, “Free-space evolution of focused Gaussian beams transformed by conical diffraction in a biaxial crystal,” Opt. Commun. 2833011–3016 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Eur. Phys. J. D (1)

Yu. V. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birk, and J. Mompart, “Coherent injecting, extracting, and velocity-filtering of neutral atoms in a ring trap via spatial adiabatic passage,” Eur. Phys. J. D 68, 147 (2014).
[Crossref]

J. Opt. (1)

V. Peet, “Biaxial crystal as a versatile mode converter,” J. Opt. 12, 095706 (2010).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685 (2005).
[Crossref]

M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6289–300 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

Microscopy and Microanalysis (1)

G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez, J. Caron, and C. Fallet, “Conical diffraction based super-resolution system for fluorescence microscopy: system Description and demonstration visualizing biological objects,” Microscopy and Microanalysis 13, 1178–1179 (2013).

Nature Photon. (1)

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 21, 26335–26340 (2014).

Nature Phys. (2)

M. R. Dennis, R. P. King, B. Jack, K. O Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nature Phys. 6, 118–121 (2010).
[Crossref]

D. Kleckner and W. T. M. Irvine, “Creation and dynamics of knotted vortices,” Nature Phys. 9, 253–258 (2013).
[Crossref]

Opt. Commun. (2)

V. Peet and D. Zolotukhin, “Free-space evolution of focused Gaussian beams transformed by conical diffraction in a biaxial crystal,” Opt. Commun. 2833011–3016 (2010).
[Crossref]

V. Peet, “The far-field structure of Gaussian light beams transformed by internal conical refraction in a biaxial crystal,” Opt. Commun. 311150–155 (2010).
[Crossref]

Opt. Communs. (1)

A. M. Belsky and M. A. Stepanov, “Internal conical refraction of coherent light beams,” Opt. Communs. 167, 1–5 (1999).
[Crossref]

Opt. Express (12)

R. W. Schoonover and T. D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express 14, 5733–5745 (2006).
[Crossref] [PubMed]

A. Turpin, Yu. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 214503–4511 (2013).
[Crossref] [PubMed]

D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express 21, 5424–5431 (2013).,
[Crossref]

S. Rosen, G. Y. Sirat, H. Ilan, and A. J. Agranat, “A sub wavelength localization scheme in optical imaging using conical diffraction,” Opt. Express 21, 10133–10138 (2013).
[Crossref] [PubMed]

C. F. Phelan, D. P. ODwyer, Y. P. Rakovich, J. F. Donegan, and J. G. Lunney, “Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express 17, 12891–12899 (2009).
[Crossref] [PubMed]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincare beams,” Opt. Express 18, 10777–10785 (2010).
[Crossref] [PubMed]

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863 (2010)
[Crossref] [PubMed]

V. Peet, “Improving directivity of laser beams by employing the effect of conical refraction in biaxial crystals,” Opt. Express 18, 19566–19573 (2010).
[Crossref] [PubMed]

D.P. ODwyer, C.F. Phelan, K.E. Ballantine, Y.P. Rakovich, J. G. Lunney, and J.F. Donegan, “Conical diffraction of linearly polarised light controls the angular position of a microscopic object,” Opt. Express 18, 27319–27326 (2009).
[Crossref]

C. F. Phelan, J. F. Donegan, and J. G. Lunney, “Generation of a radially polarized light beam using internal conical diffraction,” Opt. Express 19, 21793–21802 (2011).
[Crossref] [PubMed]

G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov, “Conical Refraction: New observations and a dual cone model,” Opt. Express 21, 11125–11131 (2013).
[Crossref] [PubMed]

A. Turpin, V. Shvedov, C. Hnatovsky, Yu. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: A reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref] [PubMed]

Opt. Lett. (7)

Opt. Spectrosc. (USSR) (1)

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. (USSR) 44, 436–439 (1978).

Phys. Rev. A (1)

R. Fickler, R. LApkiewicz, S. Ramelow, and A. Zeilinger, “Quantum entanglement of complex photon polarization patterns in vector beams,” Phys. Rev. A 89, 060301(R) (2014).
[Crossref]

Phys. Rev. Lett. (1)

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113, 153901 (2014).
[Crossref] [PubMed]

Proc. R. Soc. London, Ser. A (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

Proc. SPIE (2)

T. K. Kalkandjiev and M. Bursukova, “The conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

Yu. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and Edik U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 896089601Q (2014).
[Crossref]

Prog. Opt. (2)

M. R. Dennis, K. O Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7 (expanded) ed. (Cambridge University Press, Cambridge, 1999).
[Crossref]

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” in Press.

Supplementary Material (8)

» Media 1: AVI (3065 KB)     
» Media 2: AVI (2984 KB)     
» Media 3: AVI (2626 KB)     
» Media 4: AVI (2589 KB)     
» Media 5: AVI (5927 KB)     
» Media 6: AVI (5798 KB)     
» Media 7: AVI (2731 KB)     
» Media 8: AVI (2696 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 CR intensity distribution for a circularly polarized input beam and under conditions of ρ0R0/w0 ≫ 1. (a) Intensity along the propagation direction z, which possesses cylindrical symmetry. (b) Transverse intensity pattern at z = 0 (focal plane) showing the two bright rings split by the dark Poggendorff one. Blue double arrows indicate the linear plane of polarization. w0 is the beam waist and zR the Rayleigh length.
Fig. 2
Fig. 2 Transverse pattern of the Stokes parameters S0, S1, S2, S3 obtained from numerical simulations (box (a)) and experimentally (box (b)) for the CR beam transverse profile with a RHCP and a LP (Φ = 45°) Gaussian input beam. First and second rows correspond to the focal plane (Z = 0) while third and fourth rows to the Raman spot plane (Z = 10.92). The plane of optic axes of the crystal lies horizontally (φc = 0). Media 1 and Media 2 show in detail the evolution of the numerically calculated Stokes parameters along the axial direction both for RHCP and LP (Φ = 45°) Gaussian input beams.
Fig. 3
Fig. 3 Experimental set-up. A diode laser coupled to a monomode fiber generates a Gaussian beam at 640nm with a beam waist radius w0 = 1.26mm. Then the beam is focused by means of a focusing lens (FL) along one of the optic axes of a KGd(WO4)2 biaxial crystal (BC). Experiments from Fig. 2(b) were carried out using a FL with 100mm focal length and a biaxial crystal 10.5mm long, while FLs with focal lengths of 150mm, 200mm and 400mm and a biaxial crystal 2.3mm long were used for the experiments from Fig. 6. Linear and circular polarizers are used as polarization state generators (PSG) and polarization state detectors (PSD) to generate and measure the SOP of the input and output beam, respectively. The transverse patterns are recorded by means of an imaging lens (IL) that projects the image into a CCD camera.
Fig. 4
Fig. 4 Intensity variation (a) along the radial direction ρ at the focal plane Z = 0 and (b) along the axial direction Z at the beam center (ρ = 0) for CR vector beams obtained using ρ0 = 1.50 (blue-solid line), ρ0 = 0.92 (red-dashed line) and ρ0 = 0.45 (black-dotted line). The corresponding intensity distribution in the (Z, ρ) plane are shown in figures (c)–(e)
Fig. 5
Fig. 5 Numerically calculated Stokes parameters for ρ0 = 1.50 (a), ρ0 = 0.92 (b), and ρ0 = 0.45 (c). See Media 3, Media 4, Media 5, Media 6, Media 7, Media 8 for additional simulations on the evolution of Stokes parameters along the axial direction. The plane of optic axes of the crystal lies horizontally (φc = 0).
Fig. 6
Fig. 6 Measured Stokes parameters for: (a) ρ0 = 1.48, (b) ρ0 = 0.95, and (c) ρ0 = 0.44.
Fig. 7
Fig. 7 Numerically simulated transverse intensity patterns and SOP (blue lines) at Z = 0 of vector beams obtained for a RHCP (first row) and a LP (Φ = 45°) input Gaussian beam for ρ0 = 10.0 (first column), ρ0 = 1.50 (second column), ρ0 = 0.92 (third column) and ρ0 = 0.45 (fourth column).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I = | E x | 2 + | E y | 2 ,
S 1 = I 0 ° I 90 ° = | E x | 2 | E y | 2 ,
S 2 = I 45 ° I 135 ° = 2 Re [ E x * E y ] ,
S 3 = I R I L = 2 Im [ E x * E y ] ,
Φ = 1 2 arctan ( S 2 S 1 ) ,
β = 1 2 arctan ( S 3 S 1 2 + S 2 2 ) .
E ( ρ , Z ) = ( B 0 + C S S B 0 C ) e 0 ,
B 0 ( ρ , Z ) = 1 2 π 0 η a ( η ) e i Z 4 η 2 cos ( η ρ 0 ) J 0 ( η ρ ) d η ,
B 1 ( ρ , Z ) = 1 2 π 0 η a ( η ) e i Z 4 η 2 sin ( η ρ 0 ) J 1 ( η ρ ) d η ,
Z Raman = ± 4 3 ρ 0 .
E x = B 0 + B 1 e ± i φ ,
E y = ± i B 0 i B 1 e ± i φ ,
I CP = 2 ( | B 0 | 2 + | B 1 | 2 ) ,
E x = B 0 cos Φ + B 1 cos ( φ Φ ) ,
E y = B 0 sin Φ + B 1 sin ( φ Φ ) ,
I LP = I CP + 2 Re [ B 0 B 1 * ] cos ( 2 Φ φ ) ,

Metrics