Abstract

An analog of plasmonic system for electromagnetically induced transparency (EIT), in which a small nanodisk with a big side-coupled-nanodisk is directly coupled to the metal-insulator -metal (MIM) waveguide, has been proposed and investigated theoretically and numerically. When the resonant frequencies of the two nanodisks differ not too much, a powerful EIT-like effect can be obtained, and the transparency window can be easily tuned by adjusting the radii of the two nanodisks. The plasmonic device can be used as a high-performance EIT-like filter with transmission over 80% and full width at half-maximum (FWHM) less than 30nm, besides, the novel structure shows a high group index over 355. The system paves a new way toward highly integrated optical circuits and networks, especially for wavelength-selective, ultrafast switching, light storage and nonlinear devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators

Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang
Opt. Express 21(8) 9198-9205 (2013)

Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator

Ali Akhavan, Hassan Ghafoorifard, Saeed Abdolhosseini, and Hamidreza Habibiyan
Appl. Opt. 56(34) 9556-9563 (2017)

Plasmon-induced transparency in a single multimode stub resonator

Guangtao Cao, Hongjian Li, Yan Deng, Shiping Zhan, Zhihui He, and Boxun Li
Opt. Express 22(21) 25215-25223 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
    [Crossref] [PubMed]
  3. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [Crossref]
  4. H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref] [PubMed]
  5. T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  6. H. Lu, X. M. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
    [Crossref] [PubMed]
  7. G. Z. Zhan, R. S. Liang, H. T. Liang, J. Luo, and R. Zhao, “Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities,” Opt. Express 22(8), 9912–9919 (2014).
    [Crossref] [PubMed]
  8. Y. Gong, X. Liu, and L. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35(3), 285–287 (2010).
    [Crossref] [PubMed]
  9. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  10. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  11. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  12. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  13. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
    [Crossref]
  14. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
    [Crossref] [PubMed]
  15. L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
    [Crossref] [PubMed]
  16. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide system,” Phys. Rev. A 85(5), 053803 (2012).
    [Crossref]
  17. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  18. J. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37(24), 5133–5135 (2012).
    [Crossref] [PubMed]
  19. V. Kravtsov, J. M. Atkin, and M. B. Raschke, “Group delay and dispersion in adiabatic plasmonic nanofocusing,” Opt. Lett. 38(8), 1322–1324 (2013).
    [Crossref] [PubMed]
  20. G. Wang, “Slow light engineering in periodic-stub-assisted plasmonic waveguide,” Appl. Opt. 52(9), 1799–1804 (2013).
    [Crossref] [PubMed]
  21. Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).
  22. G. T. Cao, H. J. Li, S. P. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
    [Crossref] [PubMed]
  23. T. Wang, Y. S. Zhang, Z. Hong, and Z. H. Han, “Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators,” Opt. Express 22(18), 21529–21534 (2014).
    [Crossref] [PubMed]
  24. G. T. Cao, H. J. Li, S. P. Zhan, Z. H. He, Z. B. Guo, X. K. Xu, and H. Yang, “Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide,” Opt. Lett. 39(2), 216–219 (2014).
    [Crossref] [PubMed]
  25. H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [Crossref]
  26. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
    [Crossref] [PubMed]
  27. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]
  28. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).
  29. H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
    [Crossref]
  30. B. Tang, L. Dai, and C. Jiang, “Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency,” Phys. Lett. A 376(14), 1234–1238 (2012).
    [Crossref]
  31. I. Chremmos, “Magnetic field integral equation analys is of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26(12), 2623–2633 (2009).
    [Crossref]
  32. C. Zeng, J. Guo, and X. M. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
    [Crossref]

2014 (5)

2013 (3)

2012 (6)

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

J. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37(24), 5133–5135 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
[Crossref]

B. Tang, L. Dai, and C. Jiang, “Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency,” Phys. Lett. A 376(14), 1234–1238 (2012).
[Crossref]

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide system,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

2011 (4)

2010 (1)

2009 (1)

2008 (3)

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

2005 (1)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1991 (2)

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Atkin, J. M.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Cao, G. T.

Chen, J. J.

Chen, Z.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Chremmos, I.

Cui, L. N.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Dai, L.

B. Tang, L. Dai, and C. Jiang, “Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency,” Phys. Lett. A 376(14), 1234–1238 (2012).
[Crossref]

L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Duan, G. Y.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Fu, J. H.

Gong, Y.

Guo, J.

C. Zeng, J. Guo, and X. M. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

Guo, Z. B.

Han, Z.

Han, Z. H.

Harris, S. E.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

He, Z.

He, Z. H.

Hong, Z.

Hua, J.

Huang, W. P.

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Huang, X. G.

Huang, Y.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jiang, C.

B. Tang, L. Dai, and C. Jiang, “Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency,” Phys. Lett. A 376(14), 1234–1238 (2012).
[Crossref]

L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
[Crossref] [PubMed]

Kim, H.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Kravtsov, V.

Lee, B.

Li, H. J.

Liang, H. T.

Liang, R. S.

Lin, X. S.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Liu, X.

Liu, X. M.

C. Zeng, J. Guo, and X. M. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
[Crossref]

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide system,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. M.

Liu, Z.

Lu, H.

H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide system,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
[Crossref]

H. Lu, X. M. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

Luo, J.

Mao, D.

H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
[Crossref]

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide system,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

H. Lu, X. M. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

Meng, F. Y.

Min, C.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Park, J.

Peng, Y. W.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Raschke, M. B.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Shu, C. G.

Tang, B.

B. Tang, L. Dai, and C. Jiang, “Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency,” Phys. Lett. A 376(14), 1234–1238 (2012).
[Crossref]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, C.

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, G. X.

H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
[Crossref]

H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, T.

Wang, W. H.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Wang, Y.

Wu, Q.

Wu, T. S.

Xiao, J.

Xiao, J. H.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Xu, H.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Xu, X. K.

Yang, H.

Ye, H.

Yu, L.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Yu, Z. Y.

Zeng, C.

C. Zeng, J. Guo, and X. M. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

Zhan, G. Z.

Zhan, S. P.

Zhang, R.

Zhang, Y. S.

Zhao, R.

Zhao, Y. F.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

Zhu, L.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

C. Zeng, J. Guo, and X. M. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Nanotech. (1)

H. Lu, X. M. Liu, G. X. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electro-magnetically induced transparency,” Nanotech. 23(44), 444003 (2012).
[Crossref]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (9)

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[Crossref] [PubMed]

G. T. Cao, H. J. Li, S. P. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
[Crossref] [PubMed]

L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express 19(2), 1461–1469 (2011).
[Crossref] [PubMed]

H. Lu, X. M. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

G. Z. Zhan, R. S. Liang, H. T. Liang, J. Luo, and R. Zhao, “Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities,” Opt. Express 22(8), 9912–9919 (2014).
[Crossref] [PubMed]

T. Wang, Y. S. Zhang, Z. Hong, and Z. H. Han, “Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators,” Opt. Express 22(18), 21529–21534 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Lett. A (1)

B. Tang, L. Dai, and C. Jiang, “Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency,” Phys. Lett. A 376(14), 1234–1238 (2012).
[Crossref]

Phys. Rev. A (1)

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide system,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Phys. Rev. Lett. (4)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Proc. IEEE (1)

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Other (2)

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System,” Plasmonics1–7 (2014).

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of MIM waveguide directly coupled to a nanodisk resonator with gap = 0. (b) Transmission spectra for MIM waveguide directly coupled to nanodisk, with w=50nm and r=70nm .
Fig. 2
Fig. 2 (a) Schematic of MIM waveguide directly coupled to a small nanodisk and a big nanodisk couple to the small one with a gap. (b) Transmission spectra with single (red curve) and double (black curve) nanodisks.The parameters are set as w = 50nm, g = 10nm, r = 70nm, R = 249nm. (c-e)Magnetic field distributions of the double nanodisks system at 968nm, 1006nm, 1168nm, respectively.
Fig. 3
Fig. 3 (a) Transmission spectra for different radii of the lager nanodisk cavity with r = 70nm, g = 10nm, w = 50nm. (b) Transmission spectra for different gap between the two nanodisk with r = 70nm, R = 270nm, w = 50nm.
Fig. 4
Fig. 4 (a) Transmission phase shift, (b) optical delay line, and (c) group indices in the plasmonic system with r = 70nm, R = 270nm, g = 10nm.(d) and (e) are the corresponding maximum group indices and FWHM with different R from 230nm-300nm under g = 10nm and with different g from 8nm-13nm at R = 280, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T= ( ω ω 0 ) 2 + ( 1 τ 0 ) 2 ( ω ω 0 ) 2 + ( 1 τ 0 + 1 τ e ) 2
da dt =(j ω r βγ)a+j β ( S 1+ + S 2+ )+j γ b
db dt =jω b R γb+j γ a
S 2 = S 1+ +j β a
S 1 = S 2+ +j β a
T= | S 2 S 1+ | 2 = | j(ω ω r )+γ+ γ [ j(ω ω R )+γ ] [ j(ω ω r )+(β+γ) ]+ γ [ j(ω ω R )+γ ] | 2
n g = c υ g = c L τ g = c L dψ( ω ) dω

Metrics