Abstract

We propose all-fiber mode multiplexer composed of two consecutive LP11 mode selective couplers that allows for the multiplexing of LP01 mode and two-fold degenerate LP11 modes. We demonstrate WDM transmission of 32 wavelength channels with 100 GHz spacing, each carrying 3 modes of 120 Gb/s polarization division multiplexed quadrature phase shifted keying (PDM-QPSK) signal, over 560 km of few-mode fiber (FMF). Long distance transmission is achieved by 6☓6 multiple-input multiple-output digital signal processing and modal differential group delay compensated link of FMF. The all-fiber mode multiplexer has considerable potential to be used in mode- and wavelength-division multiplexed transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode division multiplexed optical transmission enabled by all–fiber mode multiplexer

Sun Hyok Chang, Hwan Seok Chung, Nicolas K. Fontaine, Roland Ryf, Kyung Jun Park, Kwangjoon Kim, Jyung Chan Lee, Jong Hyun Lee, Byoung Yoon Kim, and Young Kie Kim
Opt. Express 22(12) 14229-14236 (2014)

All-fiber 6-mode multiplexers based on fiber mode selective couplers

Sun Hyok Chang, Sang-Rok Moon, Haoshuo Chen, Roland Ryf, Nicolas K. Fontaine, Kyung Jun Park, Kwangjoon Kim, and Joon Ki Lee
Opt. Express 25(5) 5734-5741 (2017)

Mode-division multiplexed transmission with inline few-mode fiber amplifier

Neng Bai, Ezra Ip, Yue-Kai Huang, Eduardo Mateo, Fatih Yaman, Ming-Jun Li, Scott Bickham, Sergey Ten, Jesús Liñares, Carlos Montero, Vicente Moreno, Xesús Prieto, Vincent Tse, Kit Man Chung, Alan Pak Tao Lau, Hwa-Yaw Tam, Chao Lu, Yanhua Luo, Gang-Ding Peng, Guifang Li, and Ting Wang
Opt. Express 20(3) 2668-2680 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photon. Technol. Lett. 23(13), 851–853 (2011).
    [Crossref]
  3. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  4. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  5. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6☓6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  6. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Asruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2☓100Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
    [Crossref]
  7. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [Crossref] [PubMed]
  8. R. Ryf, N. K. Fontaine, M. A. Mestre, S. Randel, X. Palou, C. Bolle, A. H. Gnauck, S. Chandrasekhar, X. Liu, B. Guan, R. Essiambre, P. J. Winzer, S. G. Leon-Saval, J. Bland-Hawthorn, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jense, and R. Lingle, Jr., “12☓12 MIMO transmission over 130-km few mode fiber,” in Proceedings of Frontiers in Optics, FW6C.4 (2012).
  9. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [PubMed]
  10. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  11. J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett. 37(19), 3990–3992 (2012).
    [Crossref] [PubMed]
  12. K. J. Park, Y. K. Kim, and B. Y. Kim, “All-fiber mode division multiplexer optimized for C-band,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (online) (Optical Society of America, 2014), paper M3K.2.
    [Crossref]
  13. S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
    [Crossref] [PubMed]
  14. R. Ryf, M. Mestre, S. Randel, X. Palou, A. Gnauck, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Combined SDM and WDM transmission over 700-km Few-Mode Fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.2.
    [Crossref]
  15. L. E. Nelson, G. Zhang, M. Birk, C. Skolnicsk, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Netw. 4(11), B131–B141 (2012).
    [Crossref]
  16. S. Randel, C. Schmidt, R. Ryf, R.-J. Essiambre, and P. J. Winzer, “MIMO-based signal processing for mode-multiplexed transmission,” in Proceedings of Photonics Society Summer Topical Meeting, MC4.1 (2012).
    [Crossref]
  17. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
    [Crossref] [PubMed]
  18. R. Ryf, N. Fontaine, M. Montoliu, S. Randel, B. Ercan, H. Chen, S. Chandrasekhar, A. Gnauck, S. Leon-Saval, J. Bland-Hawthorn, J. Salazar Gil, Y. Sun, and R. Lingle, “Photonic-lantern-based mode multiplexers for few-mode-fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (online) (Optical Society of America, 2014), paper W4J.2.
    [Crossref]
  19. http://ksphotonics.com/product/mdm/ , accessed 26/2/15.
  20. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref] [PubMed]
  21. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
    [Crossref]

2014 (3)

2013 (2)

2012 (5)

2011 (4)

2010 (1)

Al Amin, A.

Bigo, S.

Bigot-Asruc, M.

Birk, M.

Bland-Hawthorn, J.

Bolle, C.

Bolle, C. A.

Boutin, A.

Brindel, P.

Burrows, E. C.

Chang, S. H.

Charlet, G.

Chen, S.

Chen, X.

Chung, H. S.

Da Ros, F.

Ding, Y.

Esmaeelpour, M.

Essiambre, R.

Essiambre, R. J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fontaine, N. K.

Foschini, G. J.

Gao, G.

Gnauck, A. H.

Goebel, B.

Gross, S.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref] [PubMed]

Huang, B.

Isaac, R.

Kim, B. Y.

Kim, K.

Kim, Y. K.

Koebele, C.

Kramer, G.

Lee, J. C.

Lee, J. H.

Leon-Saval, S. G.

Li, A.

Lingle, R.

Love, J. D.

Mardoyan, H.

McCurdy, A.

McCurdy, A. H.

Mikkelsen, B.

Mumtaz, S.

Nelson, L. E.

Ou, H.

Pan, Y.

Park, K. J.

Peckham, D. W.

Pendock, G.

Peucheret, C.

Provost, L.

Randel, S.

Rasmussen, C.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

Ryf, R.

Salsi, M.

Shieh, W.

Sierra, A.

Sillard, P.

Skolnicsk, C.

Sperti, D.

Tran, P.

Verluise, F.

Winzer, P. J.

Withford, M. J.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref] [PubMed]

Xu, J.

Zhang, G.

IEEE Photon. Technol. Lett. (1)

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photon. Technol. Lett. 23(13), 851–853 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Laser Photonics Rev. (1)

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (7)

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
[Crossref] [PubMed]

N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
[Crossref] [PubMed]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[PubMed]

P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (6)

R. Ryf, N. K. Fontaine, M. A. Mestre, S. Randel, X. Palou, C. Bolle, A. H. Gnauck, S. Chandrasekhar, X. Liu, B. Guan, R. Essiambre, P. J. Winzer, S. G. Leon-Saval, J. Bland-Hawthorn, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jense, and R. Lingle, Jr., “12☓12 MIMO transmission over 130-km few mode fiber,” in Proceedings of Frontiers in Optics, FW6C.4 (2012).

K. J. Park, Y. K. Kim, and B. Y. Kim, “All-fiber mode division multiplexer optimized for C-band,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (online) (Optical Society of America, 2014), paper M3K.2.
[Crossref]

R. Ryf, M. Mestre, S. Randel, X. Palou, A. Gnauck, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Combined SDM and WDM transmission over 700-km Few-Mode Fiber,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.2.
[Crossref]

S. Randel, C. Schmidt, R. Ryf, R.-J. Essiambre, and P. J. Winzer, “MIMO-based signal processing for mode-multiplexed transmission,” in Proceedings of Photonics Society Summer Topical Meeting, MC4.1 (2012).
[Crossref]

R. Ryf, N. Fontaine, M. Montoliu, S. Randel, B. Ercan, H. Chen, S. Chandrasekhar, A. Gnauck, S. Leon-Saval, J. Bland-Hawthorn, J. Salazar Gil, Y. Sun, and R. Lingle, “Photonic-lantern-based mode multiplexers for few-mode-fiber transmission,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (online) (Optical Society of America, 2014), paper W4J.2.
[Crossref]

http://ksphotonics.com/product/mdm/ , accessed 26/2/15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) All-fiber mode multiplexer (b) all-fiber mode demultiplexer, SMF: single-mode fiber, FMF: few-mode fiber, LOC: lobe orientation controller.
Fig. 2
Fig. 2 Output mode intensity profiles of the all-fiber mode multiplexer when signal power was launched to each of input ports of LP01, LP11a, or LP11b mode, respectively.
Fig. 3
Fig. 3 Experimental set-up. TLD: tunable laser diode, DFB: distributed feedback laser, WSS: wavelength selective switch, EDFA: Erbium doped fiber amplifier, IQ Mod.: IQ modulator, DAC: digital to analog converter, PBC: polarization beam combiner, Mux: multiplexer, DeMux: demultiplexer, WB: wavelength blocker, FMF: few-mode fiber, PD-CRX: polarization diversity-coherent receiver, LO: local oscillator.
Fig. 4
Fig. 4 (a) 120 Gb/s PDM-QPSK signal single-mode fiber back-to-back BER curves measured by each PD-CRX separately. Each curve gives the BER of 60 Gb/s QPSK signal in each polarization. (b)-(d) BER curves after 70km of FMF transmission at the signal wavelength of (b) 1535 nm (c) 1545 nm and (d) 1555 nm, respectively.
Fig. 5
Fig. 5 Optical spectrum of the WDM signals after 560 km transmission. Each spectrum of (a), (b) and (c) was obtained at the outputs of EDFAs in each loop. Resolution bandwidth: 0.5 nm.
Fig. 6
Fig. 6 Bit error rate for 560 km transmission of 32 WDM channels obtained by averaging BERs over 3 modes of 120 Gb/s PDM-QPSK signals. SD-FEC: soft decision-forward error correction.
Fig. 7
Fig. 7 Estimated impulse responses for four different types of mode coupling at (a)-(d) 1 turn, (e)-(h) 8 turns of the loop.
Fig. 8
Fig. 8 System mode dependent loss (MDL) evaluated from the estimated impulse responses for 32 wavelength channels.

Metrics