Abstract

We propose to use backward radiations of leaky waves supported by a holographic metasurface to produce spatial Bessel beams in the microwave frequency regime. The holographic metasurface consists of a grounded dielectric slab and a series of metal patches. By changing the size of metal patches, the surface-impedance distribution of the holographic metasurface can be modulated, and hence the radiation properties of the leaky waves can be designed to realize Bessel beams. Both numerical simulations and experiments verify the features of spatial Bessel beams, which may be useful in imaging applications or wireless power transmissions with the dynamic focal-depth controls.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental validation of active holographic metasurface for electrically beam steering

Kuang Zhang, Hao Yu, Xumin Ding, and Qun Wu
Opt. Express 26(5) 6316-6324 (2018)

The generation of three-dimensional curved beams based on holographic metasurface

Dawei Liu, Jiawen Wu, and Shaohui Guo
Opt. Express 26(17) 22348-22355 (2018)

Highly efficient generation of Bessel beams with polarization insensitive metasurfaces

Muhammad Rizwan Akram, Muhammad Qasim Mehmood, Tauseef Tauqeer, Ahsan Sarwar Rana, Ivan D. Rukhlenko, and Weiren Zhu
Opt. Express 27(7) 9467-9480 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [Crossref]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref] [PubMed]
  3. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
    [Crossref]
  4. S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
    [Crossref]
  5. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
    [Crossref] [PubMed]
  6. Y. Yu and W. Dou, “Generation of pseudo-bessel beams at THz frequencies by use of binary axicons,” Opt. Express 17, 888–893 (2009).
    [Crossref] [PubMed]
  7. J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
    [Crossref]
  8. J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
    [Crossref]
  9. W. B. Williams and J. B. Pendry, “Generating bessel beams by use of localized modes,” J. Opt. Soc. Am. A 22, 992–997 (2005).
    [Crossref]
  10. M. Salem, A. Kamel, and E. Niver, “Microwave bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
    [Crossref]
  11. Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
    [Crossref] [PubMed]
  12. M. Imani and A. Grbic, “Generating bessel beams using an electrically-large annular slot,” in “2013 IEEE Antennas and Propagation Society International Symposium (APSURSI),” (2013), pp. 1246–1247.
  13. A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
    [Crossref]
  14. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref] [PubMed]
  15. M. Ettorre and Grbic, “Generation of propagating bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
    [Crossref]
  16. M. Ettorre, S. Rudolph, and A. Grbic, “Generation of propagating bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012).
    [Crossref]
  17. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” Ch. 11, Antenna Engineering Handbook, J. Volakis, ed. McGraw Hill, (2007).
  18. A. Ip and D. Jackson, “Radiation from cylindrical leaky waves,” IEEE Trans. Antennas Propag. 38, 482–488 (1990).
    [Crossref]
  19. T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
    [Crossref]
  20. T. Zhao, D. Jackson, and J. Williams, “2-D periodic leaky-wave antennas-part II: slot design,” IEEE Trans. Antennas Propag. 53, 3515–3524 (2005).
    [Crossref]
  21. C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50, 25–39 (2008).
    [Crossref]
  22. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7, 201–208 (1959).
    [Crossref]
  23. B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
    [Crossref]
  24. A. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antennas Propag. 59, 2087–2096 (2011).
    [Crossref]
  25. M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).
    [Crossref]
  26. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
    [Crossref]
  27. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
    [Crossref]
  28. A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.
  29. C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
    [Crossref]
  30. R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
    [Crossref]
  31. Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-bessel beams,” Terahertz Technol. Appl. Iv 7938, 793806 (2011).
    [Crossref]
  32. G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
    [Crossref]
  33. H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
    [Crossref]
  34. M. Ettorre, M. Casaletti, and A. Grbic, “Power link budget for propagating bessel beams,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (2013), pp. 960–961.
    [Crossref]
  35. A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
    [Crossref]
  36. D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
    [Crossref]
  37. S. Ahmed, A. Schiessl, and L. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
    [Crossref]
  38. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Meta-material microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
    [Crossref]
  39. N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
    [Crossref]
  40. Y. Z. Yu and W. B. Dou, “Generation of mm- and sub mm-wave bessel beams using DOE’s designed by BOR-FDTD method and MGA,” J. Infrared Millim. Terahertz Waves 30, 172–182 (2009).
    [Crossref]
  41. P. Lemaitre-Auger, S. Abielmona, and C. Caloz, “Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2013).
    [Crossref]

2014 (4)

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).
[Crossref]

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Meta-material microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

2013 (1)

P. Lemaitre-Auger, S. Abielmona, and C. Caloz, “Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2013).
[Crossref]

2012 (5)

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

M. Ettorre and Grbic, “Generation of propagating bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

M. Ettorre, S. Rudolph, and A. Grbic, “Generation of propagating bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012).
[Crossref]

2011 (4)

M. Salem, A. Kamel, and E. Niver, “Microwave bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-bessel beams,” Terahertz Technol. Appl. Iv 7938, 793806 (2011).
[Crossref]

A. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antennas Propag. 59, 2087–2096 (2011).
[Crossref]

S. Ahmed, A. Schiessl, and L. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

2010 (1)

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

2009 (3)

Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
[Crossref] [PubMed]

Y. Z. Yu and W. B. Dou, “Generation of mm- and sub mm-wave bessel beams using DOE’s designed by BOR-FDTD method and MGA,” J. Infrared Millim. Terahertz Waves 30, 172–182 (2009).
[Crossref]

Y. Yu and W. Dou, “Generation of pseudo-bessel beams at THz frequencies by use of binary axicons,” Opt. Express 17, 888–893 (2009).
[Crossref] [PubMed]

2008 (2)

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50, 25–39 (2008).
[Crossref]

2005 (5)

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

T. Zhao, D. Jackson, and J. Williams, “2-D periodic leaky-wave antennas-part II: slot design,” IEEE Trans. Antennas Propag. 53, 3515–3524 (2005).
[Crossref]

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

W. B. Williams and J. B. Pendry, “Generating bessel beams by use of localized modes,” J. Opt. Soc. Am. A 22, 992–997 (2005).
[Crossref]

2003 (1)

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

2001 (2)

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

1999 (2)

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

1992 (1)

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[Crossref]

1990 (1)

A. Ip and D. Jackson, “Radiation from cylindrical leaky waves,” IEEE Trans. Antennas Propag. 38, 482–488 (1990).
[Crossref]

1988 (1)

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

1959 (1)

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7, 201–208 (1959).
[Crossref]

Abielmona, S.

P. Lemaitre-Auger, S. Abielmona, and C. Caloz, “Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2013).
[Crossref]

Ahmed, S.

S. Ahmed, A. Schiessl, and L. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Ala-Laurinaho, J.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Albani, M.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

Alexopolous, N.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Alici, K. B.

Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
[Crossref] [PubMed]

Arlt, J.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Baccarelli, P.

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Bachman, M.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Balma, M.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Booth, J.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

Brady, D. J.

Broas, R. F. J.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Buma, T.

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-bessel beams,” Terahertz Technol. Appl. Iv 7938, 793806 (2011).
[Crossref]

Caglayan, H.

Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
[Crossref] [PubMed]

Caloz, C.

P. Lemaitre-Auger, S. Abielmona, and C. Caloz, “Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2013).
[Crossref]

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50, 25–39 (2008).
[Crossref]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Casaletti, M.

M. Ettorre, M. Casaletti, and A. Grbic, “Power link budget for propagating bessel beams,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (2013), pp. 960–961.
[Crossref]

Chen, Z.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Choi, S.-W.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Chun, H. S.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Colburn, J.

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Courtial, J.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Devona, D.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

Divetia, A.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Dou, W.

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

Y. Yu and W. Dou, “Generation of pseudo-bessel beams at THz frequencies by use of binary axicons,” Opt. Express 17, 888–893 (2009).
[Crossref] [PubMed]

Dou, W. B.

Y. Z. Yu and W. B. Dou, “Generation of mm- and sub mm-wave bessel beams using DOE’s designed by BOR-FDTD method and MGA,” J. Infrared Millim. Terahertz Waves 30, 172–182 (2009).
[Crossref]

Driscoll, T.

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Esquius-Morote, M.

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).
[Crossref]

Ettorre, M.

M. Ettorre and Grbic, “Generation of propagating bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

M. Ettorre, S. Rudolph, and A. Grbic, “Generation of propagating bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012).
[Crossref]

M. Ettorre, M. Casaletti, and A. Grbic, “Power link budget for propagating bessel beams,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (2013), pp. 960–961.
[Crossref]

Fong, B.

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Freni, A.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

Friberg, A. T.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Gollub, J.

Gomez-Diaz, J. S.

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).
[Crossref]

Gordon, J.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

Goussetis, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

Granet, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

Grbic,

M. Ettorre and Grbic, “Generation of propagating bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

Grbic, A.

M. Ettorre, S. Rudolph, and A. Grbic, “Generation of propagating bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012).
[Crossref]

A. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antennas Propag. 59, 2087–2096 (2011).
[Crossref]

M. Imani and A. Grbic, “Generating bessel beams using an electrically-large annular slot,” in “2013 IEEE Antennas and Propagation Society International Symposium (APSURSI),” (2013), pp. 1246–1247.

M. Ettorre, M. Casaletti, and A. Grbic, “Power link budget for propagating bessel beams,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (2013), pp. 960–961.
[Crossref]

Guarnieri, G.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

Hakli, J.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Hall, T.

D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Hanson, G. W.

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Hessel, A.

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7, 201–208 (1959).
[Crossref]

Holloway, C.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

Hsieh, T.-H.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Hunt, J.

Imani, M.

M. Imani and A. Grbic, “Generating bessel beams using an electrically-large annular slot,” in “2013 IEEE Antennas and Propagation Society International Symposium (APSURSI),” (2013), pp. 1246–1247.

Ip, A.

A. Ip and D. Jackson, “Radiation from cylindrical leaky waves,” IEEE Trans. Antennas Propag. 38, 482–488 (1990).
[Crossref]

Itoh, T.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50, 25–39 (2008).
[Crossref]

Jackson, D.

T. Zhao, D. Jackson, and J. Williams, “2-D periodic leaky-wave antennas-part II: slot design,” IEEE Trans. Antennas Propag. 53, 3515–3524 (2005).
[Crossref]

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

A. Ip and D. Jackson, “Radiation from cylindrical leaky waves,” IEEE Trans. Antennas Propag. 38, 482–488 (1990).
[Crossref]

Jackson, D. R.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” Ch. 11, Antenna Engineering Handbook, J. Volakis, ed. McGraw Hill, (2007).

Jellema, W.

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

Kamel, A.

M. Salem, A. Kamel, and E. Niver, “Microwave bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Koskinen, T.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

Kuester, E. F.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

Lanigan, W.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

Lemaitre-Auger, P.

P. Lemaitre-Auger, S. Abielmona, and C. Caloz, “Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2013).
[Crossref]

Li, G.-P.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Li, Z.

Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
[Crossref] [PubMed]

Lioubtchenko, D.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

Lipworth, G.

Lonnqvist, A.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Luukkonen, O.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Mahon, R.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

Mahon, R. J.

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

Mallat, J.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

Mauriello, G.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

Mazzinghi, A.

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

McArdle, N.

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[Crossref]

McMakin, D.

D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Meltaus, J.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Meng, H.

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Monk, S.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Mrozack, A.

Murphy, J. A.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

Niver, E.

M. Salem, A. Kamel, and E. Niver, “Microwave bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Noponen, E.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

O’Hara, J.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

Ok, G.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Oliner, A.

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7, 201–208 (1959).
[Crossref]

Oliner, A. A.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” Ch. 11, Antenna Engineering Handbook, J. Volakis, ed. McGraw Hill, (2007).

Ottusch, J.

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Ozbay, E.

Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
[Crossref] [PubMed]

Padgett, M. J.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Park, K. H.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Patel, A.

A. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antennas Propag. 59, 2087–2096 (2011).
[Crossref]

Paulotto, S.

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Pendry, J. B.

Perruisseau-Carrier, J.

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).
[Crossref]

Raisanen, A.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Rennings, A.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50, 25–39 (2008).
[Crossref]

Reynolds, M. S.

Robertson, D. A.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Rudolph, S.

M. Ettorre, S. Rudolph, and A. Grbic, “Generation of propagating bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012).
[Crossref]

Saily, J.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Salem, M.

M. Salem, A. Kamel, and E. Niver, “Microwave bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Salo, J.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Salomaa, M.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Schiessl, A.

S. Ahmed, A. Schiessl, and L. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Schmidt, L.

S. Ahmed, A. Schiessl, and L. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Scott, G.

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[Crossref]

Sheen, D.

D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Sievenpiper, D.

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Simovski, C.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

Simovski, C. R.

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Smith, D.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

Smith, D. R.

Trappe, N.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

Tretyakov, S.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

Tretyakov, S. A.

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Turunen, J.

Vasara, A.

Viikari, V.

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

Visher, J.

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Westerholm, J.

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

Williams, J.

T. Zhao, D. Jackson, and J. Williams, “2-D periodic leaky-wave antennas-part II: slot design,” IEEE Trans. Antennas Propag. 53, 3515–3524 (2005).
[Crossref]

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

Williams, W. B.

Withington, S.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

Xiang, B.

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Yakovlev, A. B.

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

Yang, H.-Y.

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Yu, Y.

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

Y. Yu and W. Dou, “Generation of pseudo-bessel beams at THz frequencies by use of binary axicons,” Opt. Express 17, 888–893 (2009).
[Crossref] [PubMed]

Yu, Y. Z.

Y. Z. Yu and W. B. Dou, “Generation of mm- and sub mm-wave bessel beams using DOE’s designed by BOR-FDTD method and MGA,” J. Infrared Millim. Terahertz Waves 30, 172–182 (2009).
[Crossref]

Zhang, J.

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Zhang, L.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Zhang, Z.

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-bessel beams,” Terahertz Technol. Appl. Iv 7938, 793806 (2011).
[Crossref]

Zhao, T.

T. Zhao, D. Jackson, and J. Williams, “2-D periodic leaky-wave antennas-part II: slot design,” IEEE Trans. Antennas Propag. 53, 3515–3524 (2005).
[Crossref]

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86, 103902 (2005).
[Crossref]

Electron. Lett. (1)

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, “Millimetre-wave bessel beams using computer holograms,” Electron. Lett. 37, 834 (2001).
[Crossref]

IEEE Antennas Propag. Mag. (2)

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50, 25–39 (2008).
[Crossref]

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012)
[Crossref]

IEEE Trans. Antennas Propag. (11)

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).
[Crossref]

B. Fong, J. Colburn, J. Ottusch, J. Visher, and D. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

A. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antennas Propag. 59, 2087–2096 (2011).
[Crossref]

M. Salem, A. Kamel, and E. Niver, “Microwave bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. 62, 3911–3919 (2014).
[Crossref]

M. Ettorre and Grbic, “Generation of propagating bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

M. Ettorre, S. Rudolph, and A. Grbic, “Generation of propagating bessel beams using leaky-wave modes: Experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012).
[Crossref]

A. Ip and D. Jackson, “Radiation from cylindrical leaky waves,” IEEE Trans. Antennas Propag. 38, 482–488 (1990).
[Crossref]

T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag. 53, 3505–3514 (2005).
[Crossref]

T. Zhao, D. Jackson, and J. Williams, “2-D periodic leaky-wave antennas-part II: slot design,” IEEE Trans. Antennas Propag. 53, 3515–3524 (2005).
[Crossref]

P. Lemaitre-Auger, S. Abielmona, and C. Caloz, “Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

J. Meltaus, J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech. 51, 1274–1280 (2003).
[Crossref]

D. Sheen, D. McMakin, and T. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

S. Ahmed, A. Schiessl, and L. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).
[Crossref]

Infrared Phys. Technol. (1)

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

IRE Trans. Antennas Propag. (1)

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7, 201–208 (1959).
[Crossref]

J. Infrared Millim. Terahertz Waves (2)

H. Meng, B. Xiang, J. Zhang, W. Dou, and Y. Yu, “The generation of bessel beam and its application in millimeter wave imaging,” J. Infrared Millim. Terahertz Waves 35, 208–217 (2014).
[Crossref]

Y. Z. Yu and W. B. Dou, “Generation of mm- and sub mm-wave bessel beams using DOE’s designed by BOR-FDTD method and MGA,” J. Infrared Millim. Terahertz Waves 30, 172–182 (2009).
[Crossref]

J. Opt. Soc. Am. A (3)

Nano Lett. (1)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Opt. Eng. (1)

G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009).
[Crossref] [PubMed]

Sensors (1)

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Terahertz Technol. Appl. Iv (1)

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-bessel beams,” Terahertz Technol. Appl. Iv 7938, 793806 (2011).
[Crossref]

Other (5)

M. Ettorre, M. Casaletti, and A. Grbic, “Power link budget for propagating bessel beams,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (2013), pp. 960–961.
[Crossref]

A. B. Yakovlev, O. Luukkonen, C. R. Simovski, S. A. Tretyakov, S. Paulotto, P. Baccarelli, and G. W. Hanson, “Analytical Modeling of Surface Waves on High Impedance Surfaces,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds., NATO Science for Peace and Security Series B:Physics and Biophysics (SpringerNetherlands, 2009), pp. 239–254.

R. J. Mahon, W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, “Novel techniques for millimeter wave imaging systems operating at 100GHz,” in Passive Millimeter-Wave Imaging Technology VIII, R. Appleby and D. A. Wikner, eds. (Spie-Int Soc Optical Engineering, 2005), Vol. 5789, pp. 93–100.
[Crossref]

M. Imani and A. Grbic, “Generating bessel beams using an electrically-large annular slot,” in “2013 IEEE Antennas and Propagation Society International Symposium (APSURSI),” (2013), pp. 1246–1247.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” Ch. 11, Antenna Engineering Handbook, J. Volakis, ed. McGraw Hill, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The conical beam generated from leaky waves by the holographic metasurface. The TM surface wave is excited by a monopole located in the metasurface center. The metasurface is modulated by the sinusoidally surface impedance to radiate backward leaky waves, which are interfered with each other to form a Bessel beam.
Fig. 2
Fig. 2 (a) The unit cell of a square metallic patch with the lattice constant d = 3mm, the patch size a, and the gap between adjacent metallic patches g = da. (b) The boundary setting of the unit cell in the CST Microwave Studio. (c) Curve fitting for g(Z) after getting different value of surface impedance Z in 17GHz by changing g from 0.2mm to 1mm in (b).
Fig. 3
Fig. 3 (a) A portion of the fabricated holographic metasurface with the size of 408mm×408mm to generate the backward conical beam at θ = 15°. (b) The corresponding 2D radiation patterns simulated by CST. (c) The corresponding 2D radiation patterns by measurements.
Fig. 4
Fig. 4 The |Ez| distributions in the near-field region (from z = 0 to z = 252mm in the x-z plane) of the holographic metasurface. The metasurface is located in the x-y plane with the size of 252mm×252mm, where a pseudo-Bessel beam above the x-y plane is interfered by the backward leaky waves with θ = 45°. (a)-(c) The simulation results at 16.5, 17 and 17.5GHz. (d)-(f) The measurement results at 16.5, 17 and 17.5GHz. We remark that the measurement area is limited in a size of 200mm×200mm due to the experiment constraint, which is also marked in (a)-(c) with dashed lines. In (b) and (e), the non-diffraction range is drawn in solid lines. The propagation distance of pseudo-Bessel beam is changed due to the beam scanning characteristics of backward leaky waves.
Fig. 5
Fig. 5 (a) The measurement platform of the pseudo-Bessel beam, in which the 2D translation stage moves in the x-z plane. (b) The Bessel-like distributions of |Ez| fields along a line from x = 63mm to x = 63mm in the x-z plane with y = 0,z = 63mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z ( ρ , θ ) = j [ X + M cos ( k n ρ ± k ρ sin θ ) ] ,
k 1 = n k 2 π p = k sin θ ,
Z = Z 0 1 k t 2 k 2 ,
g = ( 1.3360 × 10 6 ) | Z | 3 + ( 9.2688 × 10 4 ) | Z | 2 0.2189 × | Z | + 17.84 ,

Metrics