Abstract

We present a novel dual-channel fiber optic interferometer based on intermodal interference from single-mode fiber (SMF) bending. This dual-channel interferometer has simple structure, consisting of two bare fiber semicircular bending regions with different bending radiuses connected by a section of straight fiber. A dual-channel interferometer with bending radiuses of 4 mm and 4.3mm is fabricated and refractive index (RI) sensing is realized by measuring the wavelength shift of the resonance dips in the transmission spectrum of the dual-channel interferometer. In the RI range of 1.3403 to 1.3726, the corresponding RI sensitivities for these two channels are 207 and 245nm/RIU (refractive index unit) and the RI resolutions are about 6.57 × 10−5 RIU and 5.55 × 10−5 RIU, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel optical fiber refractometer based on tree topology structure

Panpan Niu, Junfa Zhao, Cheng Zhang, Hua Bai, and Weiguang Shi
Appl. Opt. 57(16) 4696-4700 (2018)

Optimization of long-period grating-based refractive index sensor by bent-fiber interference

Xinpu Zhang, Lingxiao Xie, Yang Zhang, and Wei Peng
Appl. Opt. 54(31) 9152-9156 (2015)

Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers

Jixuan Wu, Yinping Miao, Binbin Song, Kailiang Zhang, Wei Lin, Hao Zhang, Bo Liu, and Jianquan Yao
Appl. Opt. 53(22) 5037-5041 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
    [Crossref]
  2. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
    [Crossref]
  3. X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
    [Crossref]
  4. S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
    [Crossref]
  5. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  6. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36(12), 2197–2199 (2011).
    [Crossref] [PubMed]
  7. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
    [Crossref]
  8. L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [Crossref] [PubMed]
  9. J. Shi, S. Xiao, M. Bi, L. Yi, and P. Yang, “Discrimination between strain and temperature by cascading single-mode thin-core diameter fibers,” Appl. Opt. 51(14), 2733–2738 (2012).
    [Crossref] [PubMed]
  10. J. Wu, Y. Miao, B. Song, K. Zhang, W. Lin, H. Zhang, B. Liu, and J. Yao, “Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers,” Appl. Opt. 53(22), 5037–5041 (2014).
    [Crossref] [PubMed]
  11. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  12. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
    [Crossref] [PubMed]
  13. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
    [Crossref]
  14. P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  15. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  16. L. Bilro, N. J. Alberto, L. M. Sá, J. de Lemos Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” J. Lightwave Technol. 29(6), 864–870 (2011).
    [Crossref]
  17. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  18. S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett. 102(21), 213114 (2013).
    [Crossref]
  19. R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of fiberoptic long-period grating-based interferometric sensors,” J. Lightwave Technol. 25(3), 825–829 (2007).
    [Crossref]
  20. D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cárdenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Lowloss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28(24), 3542–3547 (2010).
    [Crossref]
  21. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19(8), 7596–7602 (2011).
    [Crossref] [PubMed]
  22. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [Crossref] [PubMed]
  23. J. H. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4(1), 34–40 (1986).
    [Crossref]
  24. R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, “Wavelength dependence of bending loss in monomode optical fibers: Effect of the fiber buffer coating,” Opt. Lett. 15(17), 947–949 (1990).
    [Crossref] [PubMed]
  25. Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14(7), 495–501 (1978).
    [Crossref]
  26. A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
    [Crossref]
  27. P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macro bending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009).
    [Crossref] [PubMed]
  28. H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
    [Crossref]
  29. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  30. X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
    [Crossref]
  31. G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
    [Crossref]
  32. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  33. C. Wu, M. L. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
    [Crossref] [PubMed]
  34. C. Wu, Z. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing,” Opt. Express 22(18), 21757–21766 (2014).
    [Crossref] [PubMed]

2015 (1)

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

2014 (2)

2013 (4)

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett. 102(21), 213114 (2013).
[Crossref]

X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
[Crossref]

C. Wu, M. L. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

2012 (6)

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
[Crossref]

L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
[Crossref] [PubMed]

J. Shi, S. Xiao, M. Bi, L. Yi, and P. Yang, “Discrimination between strain and temperature by cascading single-mode thin-core diameter fibers,” Appl. Opt. 51(14), 2733–2738 (2012).
[Crossref] [PubMed]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
[Crossref] [PubMed]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

2011 (5)

2010 (3)

2009 (3)

2008 (3)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

2007 (2)

2005 (1)

2002 (1)

1990 (1)

1986 (1)

J. H. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4(1), 34–40 (1986).
[Crossref]

1978 (1)

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14(7), 495–501 (1978).
[Crossref]

Alberto, N. J.

Badenes, G.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Banerji, S.

Barrera, D.

Barton, J. S.

Bennion, I.

Bi, M.

Bilro, L.

Bock, W. J.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Booksh, K. S.

Brambilla, G.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

Campopiano, S.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Cárdenas-Sevilla, G. A.

Castle, P. F.

J. H. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4(1), 34–40 (1986).
[Crossref]

Chen, C.

Chen, J. P.

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

Chen, Q. D.

Chena, Q.

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Cui, Y.

Cusano, A.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Cutolo, A.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

de Lemos Pinto, J.

Donlagic, D.

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett. 102(21), 213114 (2013).
[Crossref]

Eggleton, B. J.

Fan, X.

Farrell, G.

Finazzi, V.

Finazzi, V. P.

Guan, B. O.

Hao, P.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Harper, P. G.

Harris, J. H.

J. H. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4(1), 34–40 (1986).
[Crossref]

Horak, P.

Hu, D. J. J.

J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
[Crossref]

Iadicicco, A.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

James, S. W.

Jeong, M. Y.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

Jha, R.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Jiang, W. N.

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

Jones, J. D. C.

Kim, Y. C.

Kuhlmey, B. T.

Lee, S. M.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

Li, K.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Li, L. C.

Li, X. W.

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

Liang, R.

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Lim, J. L.

J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
[Crossref]

Lin, W.

Liu, B.

Liu, D.

Liu, D. M.

Liu, G.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Liu, S.

Liu, Y.

X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
[Crossref]

Liu, Z.

Lu, C.

Lu, P.

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Luo, H. M.

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

Ma, Y.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Miao, Y.

Minkovich, V. P.

Morgan, R.

Murakami, Y.

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14(7), 495–501 (1978).
[Crossref]

Murphy, R. P.

Nogueira, R.

Paladino, D.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Pan, L.

X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
[Crossref]

Peng, W.

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
[Crossref]

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

Pevec, S.

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett. 102(21), 213114 (2013).
[Crossref]

Pruneri, V.

Sá, L. M.

Saini, S. S.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

Sales, S.

Semenova, Y.

Shi, J.

Shu, X.

Shum, P. P.

J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
[Crossref]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
[Crossref] [PubMed]

Song, B.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Sun, H.-B.

Sun, Q.

Tam, H. Y.

Tatam, R. P.

Ti, Y.

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Tse, M. L.

Tsuchiya, H.

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14(7), 495–501 (1978).
[Crossref]

Villatoro, J.

Wang, D. N.

Wang, G.

Wang, P.

Wang, Y.

J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

White, I. M.

Wo, J.

Wu, C.

Wu, D. K. C.

Wu, J.

Wu, Q.

Wu, Y.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Xia, L.

Xiao, S.

Xie, Z. H.

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

Xuan, M.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Xue, Y.

Yan, B.

Yang, M.

Yang, P.

Yang, R.

Yao, J.

Yi, L.

Yu, C.

Yu, Y. S.

Zhang, A. P.

Zhang, H.

Zhang, K.

Zhang, L.

Zhang, X.

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
[Crossref]

Zheng, J.

Zhou, W.

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Zou, W. W.

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

H. M. Luo, X. W. Li, W. W. Zou, W. N. Jiang, and J. P. Chen, “Modal interferometer based on a C-shaped ultrathin fiber taper for high-sensitivity refractive index measurement,” Appl. Phys. Express 5(1), 012502 (2012).
[Crossref]

Appl. Phys. Lett. (4)

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett. 102(21), 213114 (2013).
[Crossref]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chena, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14(7), 495–501 (1978).
[Crossref]

IEEE Photon. J. (1)

J. L. Lim, D. J. J. Hu, P. P. Shum, and Y. Wang, “Cascaded photonic crystal fiber interferometers for refractive index sensing,” IEEE Photon. J. 4(4), 1163–1169 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

X. Zhang, W. Peng, Y. Liu, and L. Pan, “Core–cladding mode recoupling based fiber optic refractive index sensor,” Opt. Commun. 294(3), 188–191 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Sens. Actuators A Phys. (1)

G. Liu, K. Li, P. Hao, W. Zhou, Y. Wu, and M. Xuan, “Bent optical fiber taper for refractive index detection with a high sensitivity,” Sens. Actuators A Phys. 201, 352–356 (2013).
[Crossref]

Sens. Actuators B Chem. (1)

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of multiplexing of intermodal interference based on fiber leaky-mode generation. (a) Schematic diagram of bent-fiber based intermodal interference; (b) Fiber leakage caused by bending; (c) transverse mode profiles with 5mm bending radius.
Fig. 2
Fig. 2 Transmission spectra of the fiber configurations with different bending radiuses.
Fig. 3
Fig. 3 Spectral characteristics of single-channel sensor (4.3mm bending radius). (a) Spectra when the sensor is immersed in varying RI liquid. Inset: RI responses of the sensor. (b) Transmission spectra variation by adjusting light polarization with a polarization controller (PC). Inset: Spatial spectrum.
Fig. 4
Fig. 4 The spectra of the individual 4mm and 4.3mm bending radius and the dual-channel sensor when Channel 1 is immersed in deionized water and Channel 2 is in air.
Fig. 5
Fig. 5 (a) The spectra of the dual-channel sensor when Channel 1 is immersed in varying RI liquid and Channel 2 is in 1.3565 RI throughout the measurement. Inset: RI responses of the dual channels. (b) The spectra of the dual Channel sensor when Channel 2 is immersed in varying RI liquid and Channel 1 is immersed in liquid with 1.3726 RI throughout the measurement. Inset: RI responses of the dual channels.
Fig. 6
Fig. 6 Temperature Responses. (a) Transmission spectra with increasing temperature. (b) Relationship between temperature and wavelength shift. Inset is the transmission spectra when temperatures are below 24°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ m = 2π λ D ( n co,eff n cl,m,eff )C= 2π λ D Δ n eff πR=(2k+1)π
d λ D d n ext = λ D Δ n eff n cl,m,eff n ext /[ 1 λ D Δ n eff ( n co,eff λ n cl,m,eff λ ) ]

Metrics