Abstract

In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications

Piotr Jaworski, Fei Yu, Robert R.J. Maier, William J. Wadsworth, Jonathan C. Knight, Jonathan D. Shephard, and Duncan P. Hand
Opt. Express 21(19) 22742-22753 (2013)

High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J.C. Knight, P. St.J. Russell, and B. J. Mangan
Opt. Express 12(4) 717-723 (2004)

Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications

Jonathan D. Shephard, Francois Couny, Phillip St. J. Russell, Julian D. C. Jones, Jonathan C. Knight, and Duncan P. Hand
Appl. Opt. 44(21) 4582-4588 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Wlodarczyk and D. P. Hand, “Shaping the surface of Borofloat 33 glass with ultrashort laser pulses and a spatial light modulator,” Appl. Opt. 53(9), 1759–1765 (2014).
    [Crossref] [PubMed]
  2. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
    [Crossref] [PubMed]
  3. J. P. Parry, J. D. Shephard, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, “Optical fiber array for the delivery of high peak-power laser pulses for fluid flow measurements,” Appl. Opt. 46(17), 3432–3438 (2007).
    [Crossref] [PubMed]
  4. P. J. Mosley, W. C. Huang, M. G. Welch, B. J. Mangan, W. J. Wadsworth, and J. C. Knight, “Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength,” Opt. Lett. 35(21), 3589–3591 (2010).
    [Crossref] [PubMed]
  5. P. Jaworski, F. Yu, R. M. Carter, W. J. Wadsworth, T. A. Birks, J. C. Knight, J. D. Shephard, and D. P. Hand, “High peak power nanosecond and picosecond pulse delivery through a hollow-core Negative Curvature Fiber in the green spectral region for micro-machining,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoM3B.5.
  6. B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39(21), 6245–6248 (2014).
    [Crossref] [PubMed]
  7. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23(3), 2557–2565 (2015).
    [Crossref]
  8. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  9. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
    [Crossref] [PubMed]
  10. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  11. P. Jaworski, F. Yu, D. G. MacLachlan, R. R. Maier, R. R. Thomson, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “A hollow-core Negative Curvature Fibre for efficient delivery of NIR picosecond and femtosecond pulses for precision micro-machining, ” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper F3.3.
    [Crossref]
  12. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [Crossref] [PubMed]
  13. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  14. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  15. J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Measuring beam quality of hollow core photonic crystal fibers,” J. Lightwave Technol. 24(10), 3761–3769 (2006).
    [Crossref]

2015 (1)

2014 (3)

2013 (2)

2012 (2)

2010 (2)

2007 (1)

2006 (1)

2002 (1)

Abeeluck, A. K.

Alharbi, M.

Auguste, J.-L.

Beaudou, B.

Beck, R. J.

Benabid, F.

Benoît, A.

Bierlich, J.

Blondy, J.-M.

Bradley, T. D.

Debord, B.

Dontabactouny, M.

Eggleton, B. J.

Fourcade-Dutin, C.

Frosch, T.

Gerôme, F.

Gérôme, F.

Ghosh, D.

Hand, D. P.

K. L. Wlodarczyk and D. P. Hand, “Shaping the surface of Borofloat 33 glass with ultrashort laser pulses and a spatial light modulator,” Appl. Opt. 53(9), 1759–1765 (2014).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref] [PubMed]

R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
[Crossref] [PubMed]

J. P. Parry, J. D. Shephard, M. J. Thomson, M. R. Taghizadeh, J. D. C. Jones, and D. P. Hand, “Optical fiber array for the delivery of high peak-power laser pulses for fluid flow measurements,” Appl. Opt. 46(17), 3432–3438 (2007).
[Crossref] [PubMed]

J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Measuring beam quality of hollow core photonic crystal fibers,” J. Lightwave Technol. 24(10), 3761–3769 (2006).
[Crossref]

Hartung, A.

Headley, C.

Hoenninger, C.

Huang, W. C.

Humbert, G.

Husakou, A.

Jaworski, P.

Jones, J. D. C.

Knight, J. C.

Kobelke, J.

Litchinitser, N. M.

MacPherson, W. N.

Maier, R. R. J.

Mangan, B. J.

Mosley, P. J.

Mottay, E.

Parry, J. P.

Popp, J.

Roberts, P. J.

Schmidt, M. A.

Schwuchow, A.

Shephard, J. D.

Taghizadeh, M. R.

Thomson, M. J.

Urich, A.

Vincetti, L.

Waddie, A.

Wadsworth, W. J.

Wang, Y. Y.

Welch, M. G.

Weston, N. J.

Wlodarczyk, K. L.

Wondraczek, K.

Yu, F.

Appl. Opt. (2)

Biomed. Opt. Express (1)

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (4)

Other (2)

P. Jaworski, F. Yu, R. M. Carter, W. J. Wadsworth, T. A. Birks, J. C. Knight, J. D. Shephard, and D. P. Hand, “High peak power nanosecond and picosecond pulse delivery through a hollow-core Negative Curvature Fiber in the green spectral region for micro-machining,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoM3B.5.

P. Jaworski, F. Yu, D. G. MacLachlan, R. R. Maier, R. R. Thomson, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “A hollow-core Negative Curvature Fibre for efficient delivery of NIR picosecond and femtosecond pulses for precision micro-machining, ” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper F3.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 SEM image of the fabricated NCF.
Fig. 2
Fig. 2 Transmission spectra of 10 m (solid black line) and 40 m (solid red line) NCFs.
Fig. 3
Fig. 3 Attenuation spectrum of the fabricated fiber.
Fig. 4
Fig. 4 Experimental setup for fiber bending tests.
Fig. 5
Fig. 5 Bending loss present in 1.2 m fiber due to 180 bend for different bending diameters at 532 nm (red circles) and 515 nm (black dots).
Fig. 6
Fig. 6 NCF-delivered beam profiles for different bend diameters at: (a) 515 nm; (b) 532 nm. Note that the distortions (fringes) visible in the beam patterns are due to interference from the filters used in the imaging system.
Fig. 7
Fig. 7 (a) Fiber-delivered near field beam profile. (b) Results of the M2 measurement of the fiber-delivered beam at 532 nm.
Fig. 8
Fig. 8 Optical spectra of: picosecond laser beam (35 µJ pulse energy, solid blue line); delivered beam through 1 m NCF (30 µJ pulse energy, solid red line) and 8.8 m NCF (21.5 µJ pulse energy, solid green line).
Fig. 9
Fig. 9 Intensity autocorrelation traces of: picosecond laser light (35 µJ, solid red line); transmitted beam through 1m fiber (30 µJ, solid black line) and 8.8 m NCF (21.5 µJ, solid blue line).
Fig. 10
Fig. 10 (a) NCF-delivered near field beam profile. (b) Beam radius measurements and M2 parameter fit of the fiber-delivered beam at 515 nm.
Fig. 11
Fig. 11 Results of ns machining with NCF-delivered pulses: (a) cutting of aluminum; (b) marking in titanium.
Fig. 12
Fig. 12 Examples of crack-free micro-milling of fused silica with NCF-delivered ps pulses.

Metrics