Abstract

Unambiguous identification of low concentration chemical mixtures can be performed by broadband enhanced infrared absorption (BEIRA). Here we propose and numerically study a corrugated parallel plate waveguide (CPPW) with gradient grooves which is capable of directly converting transmission modes to surface plasmon modes and could hence serve as a powerful chemical sensor. Such a waveguide can be designed to exhibit a wide pass band covering an extended portion of a molecule absorption spectrum. Broadband sensing of toluene and ethanol thin layers is demonstrated by calculating the transmission coefficient of the waveguide and is shown to correspond exactly to their infrared spectra. In addition, the upper limit and the lower limit of the bandgap are mainly dependent on the minimum and maximum groove height, respectively, which provide an effective way of tuning the working frequency of the device in order to support surface plasmon modes within a desired frequency range according to a specific application.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling rejections of spoof surface plasmon polaritons using metamaterial particles

Bai Cao Pan, Zhen Liao, Jie Zhao, and Tie Jun Cui
Opt. Express 22(11) 13940-13950 (2014)

Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

Yihao Yang, Hongsheng Chen, Sanshui Xiao, N. Asger Mortensen, and Jingjing Zhang
Opt. Express 23(15) 19074-19081 (2015)

Spoof plasmon analogue of metal-insulator-metal waveguides

Mikhail A. Kats, David Woolf, Romain Blanchard, Nanfang Yu, and Federico Capasso
Opt. Express 19(16) 14860-14870 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B Chem. 54(1–2), 3–15 (1999).
    [Crossref]
  3. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
    [Crossref] [PubMed]
  4. Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
    [Crossref] [PubMed]
  5. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  6. F. J. Garcia-Vidal, L. Mart’ın-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  7. J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, D. Tsai, and T. J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
    [Crossref] [PubMed]
  8. C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
    [Crossref]
  9. J. Liu, R. Mendis, and D. M. Mittleman, “Designer reflectors using spoof surface plasmons in the terahertz range,” Phys. Rev. B 86(24), 241405 (2012).
    [Crossref]
  10. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref] [PubMed]
  11. X. Bai, S. W. Qu, and H. Yi, “Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array,” J. Phys. D Appl. Phys. 47(32), 325101 (2014).
    [Crossref]
  12. J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
    [Crossref]
  13. Y. Zhang, Z. Hong, and Z. Han, “Spoof plasmon resonance with 1D periodic grooves for terahertz refractive index sensing,” Opt. Commun. 340, 102–106 (2015).
    [Crossref]
  14. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  15. H. Yao and S. Zhong, “High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing,” Opt. Express 22(21), 25149–25160 (2014).
    [Crossref] [PubMed]
  16. Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
    [Crossref]
  17. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
    [Crossref]
  18. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
    [Crossref] [PubMed]
  19. Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
    [Crossref]
  20. Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
    [Crossref]
  21. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
    [Crossref]
  22. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
    [Crossref]
  23. M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
    [Crossref] [PubMed]
  24. Y. Xu, Q. Wu, and H. Y. Chen, “Manipulating transverse magnetic modes in waveguide using thin plasmonic materials,” Laser Photon. Rev. 8(4), 562–568 (2014).
    [Crossref]
  25. http://webbook.nist.gov/chemistry/name-ser.html

2015 (1)

Y. Zhang, Z. Hong, and Z. Han, “Spoof plasmon resonance with 1D periodic grooves for terahertz refractive index sensing,” Opt. Commun. 340, 102–106 (2015).
[Crossref]

2014 (11)

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

H. Yao and S. Zhong, “High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing,” Opt. Express 22(21), 25149–25160 (2014).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

X. Bai, S. W. Qu, and H. Yi, “Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array,” J. Phys. D Appl. Phys. 47(32), 325101 (2014).
[Crossref]

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, D. Tsai, and T. J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Y. Xu, Q. Wu, and H. Y. Chen, “Manipulating transverse magnetic modes in waveguide using thin plasmonic materials,” Laser Photon. Rev. 8(4), 562–568 (2014).
[Crossref]

2013 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

2012 (1)

J. Liu, R. Mendis, and D. M. Mittleman, “Designer reflectors using spoof surface plasmons in the terahertz range,” Phys. Rev. B 86(24), 241405 (2012).
[Crossref]

2011 (2)

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
[Crossref] [PubMed]

2010 (2)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[Crossref] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

2008 (1)

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
[Crossref]

2005 (2)

F. J. Garcia-Vidal, L. Mart’ın-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Albert, J.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Bai, X.

X. Bai, S. W. Qu, and H. Yi, “Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array,” J. Phys. D Appl. Phys. 47(32), 325101 (2014).
[Crossref]

Baron, A.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Bartoli, F. J.

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
[Crossref]

Blanchard, R.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Camci-Unal, G.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
[Crossref] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Chen, H. Y.

Y. Xu, Q. Wu, and H. Y. Chen, “Manipulating transverse magnetic modes in waveguide using thin plasmonic materials,” Laser Photon. Rev. 8(4), 562–568 (2014).
[Crossref]

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Chiueh, H. L.

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

Chu, H. S.

Cui, T. J.

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Cuttica, D. F.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Dai, X. Z.

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Devaux, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Ding, Y. J.

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
[Crossref]

Dokmeci, M. R.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Francescato, Y.

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

Fu, Z.

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
[Crossref]

Gan, Q.

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Mart’ın-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Genet, C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

Han, Z.

Y. Zhang, Z. Hong, and Z. Han, “Spoof plasmon resonance with 1D periodic grooves for terahertz refractive index sensing,” Opt. Commun. 340, 102–106 (2015).
[Crossref]

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Hong, Z.

Y. Zhang, Z. Hong, and Z. Han, “Spoof plasmon resonance with 1D periodic grooves for terahertz refractive index sensing,” Opt. Commun. 340, 102–106 (2015).
[Crossref]

Hou, D. J.

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

Hou, J.

Huang, M.

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

Huang, M. Y.

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

Hugonin, J. P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Kats, M. A.

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
[Crossref] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Khademhosseini, A.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Koh, W. S.

Lalanne, P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Li, E. P.

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liang, Y.

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

Liao, Z.

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liu, J.

J. Liu, R. Mendis, and D. M. Mittleman, “Designer reflectors using spoof surface plasmons in the terahertz range,” Phys. Rev. B 86(24), 241405 (2012).
[Crossref]

Liu, K.

Ma, H. F.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

Maradudin, A. A.

V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Mart’in-Moreno, L.

F. J. Garcia-Vidal, L. Mart’ın-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mendis, R.

J. Liu, R. Mendis, and D. M. Mittleman, “Designer reflectors using spoof surface plasmons in the terahertz range,” Phys. Rev. B 86(24), 241405 (2012).
[Crossref]

Mittleman, D. M.

J. Liu, R. Mendis, and D. M. Mittleman, “Designer reflectors using spoof surface plasmons in the terahertz range,” Phys. Rev. B 86(24), 241405 (2012).
[Crossref]

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Pan, B. C.

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Mart’ın-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Qu, S. W.

X. Bai, S. W. Qu, and H. Yi, “Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array,” J. Phys. D Appl. Phys. 47(32), 325101 (2014).
[Crossref]

Rodier, J. C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Rousseau, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Shen, J. Q.

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

Shen, L.

Shen, X.

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Shen, X. P.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Shevchenko, Y.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Smolyaninov, I. I.

V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Tsai, C. A.

Tsai, D.

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Woolf, D.

Wu, C. J.

Wu, C.-J.

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Wu, J. J.

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, D. Tsai, and T. J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

Wu, L.

Wu, Q.

Y. Xu, Q. Wu, and H. Y. Chen, “Manipulating transverse magnetic modes in waveguide using thin plasmonic materials,” Laser Photon. Rev. 8(4), 562–568 (2014).
[Crossref]

Xu, Y.

Y. Xu, Q. Wu, and H. Y. Chen, “Manipulating transverse magnetic modes in waveguide using thin plasmonic materials,” Laser Photon. Rev. 8(4), 562–568 (2014).
[Crossref]

Yang, J. J.

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

Yang, T. J.

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, D. Tsai, and T. J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

Yao, H.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Yi, H.

X. Bai, S. W. Qu, and H. Yi, “Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array,” J. Phys. D Appl. Phys. 47(32), 325101 (2014).
[Crossref]

Yu, N.

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
[Crossref] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Zayats, V.

V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhang, Y.

Y. Zhang, Z. Hong, and Z. Han, “Spoof plasmon resonance with 1D periodic grooves for terahertz refractive index sensing,” Opt. Commun. 340, 102–106 (2015).
[Crossref]

Zhao, J.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Zhong, S.

ACS Photon. (2)

Y. Francescato, V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, “Graphene sandwiches as a platform for broadband molecular spectroscopy,” ACS Photon. 1(5), 437–443 (2014).
[Crossref]

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband Terahertz Sensing on Spoof Plasmon Surfaces,” ACS Photon. 1(10), 1059–1067 (2014).
[Crossref]

Biosens. Bioelectron. (1)

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(15), 359–367 (2014).
[Crossref] [PubMed]

Electron. Lett. (1)

C.-J. Wu, D. J. Hou, H. L. Chiueh, T. J. Yang, J. J. Wu, and J. Q. Shen, “Differential transmission lines with surface plasmon polaritons at low frequencies,” Electron. Lett. 50(5), 379–381 (2014).
[Crossref]

Europhys. Lett. (1)

J. J. Yang, M. Huang, X. Z. Dai, M. Y. Huang, and Y. Liang, “A spoof surface WGM sensor based on a textured PEC cylinder,” Europhys. Lett. 103(4), 44001 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, “From waveguiding to spatial localization of THz waves within a plasmonic metallic grating,” IEEE J. Sel. Top. Quantum Electron. 14(2), 486–490 (2008).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Mart’ın-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Phys. D Appl. Phys. (2)

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

X. Bai, S. W. Qu, and H. Yi, “Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array,” J. Phys. D Appl. Phys. 47(32), 325101 (2014).
[Crossref]

Laser Photon. Rev. (2)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Y. Xu, Q. Wu, and H. Y. Chen, “Manipulating transverse magnetic modes in waveguide using thin plasmonic materials,” Laser Photon. Rev. 8(4), 562–568 (2014).
[Crossref]

Nano Lett. (1)

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

Opt. Commun. (1)

Y. Zhang, Z. Hong, and Z. Han, “Spoof plasmon resonance with 1D periodic grooves for terahertz refractive index sensing,” Opt. Commun. 340, 102–106 (2015).
[Crossref]

Opt. Express (5)

Phys. Rep. (1)

V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. B (1)

J. Liu, R. Mendis, and D. M. Mittleman, “Designer reflectors using spoof surface plasmons in the terahertz range,” Phys. Rev. B 86(24), 241405 (2012).
[Crossref]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Sens. Actuat. B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Other (1)

http://webbook.nist.gov/chemistry/name-ser.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulation model (a) The corrugated parallel plate waveguide. (b) The corrugated parallel plate waveguide with gradient groove.
Fig. 2
Fig. 2 Dispersion diagram of the CPPW with a=0.9μm , d=1.8μm . (a) g=27μm , h=25μm ;(b) g=27μm , h=41.25μm ; (c) g=12μm , h=41.25μm ;(d) The upper branch of the dispersion diagram for different values of h. From top to bottom the curves are corresponding to h=20μm , 25μm , 35μm , 41.25μm and 45μm . The diagonal dashed red line is the light line representing the dispersion relation of electromagnetic waves in air.
Fig. 3
Fig. 3 Transmission coefficient of the CPPW with and without tapering. a = 0.9μm, d = 1.8μm, g = 27μm. Groove height of the gradient CPPW is set to be h = 25μm, h = 1.65h.
Fig. 4
Fig. 4 (Left) electric field (Ey) and (right) the corresponding power flow distribution. (a) (b) Cross section of the gradient CPPW (in the pass band and fr = 5THz). (c) (d) Cross section of the gradient CPPW (in the stop band at fr = 3THz). (e) (f) Cross section of the CPPW (in the pass band at fr = 5THz).
Fig. 5
Fig. 5 Transmission coefficient of the gradient CPPW for toluene deposited on the upper and lower surface. The inset shows the absorption spectrum of toluene [25].
Fig. 6
Fig. 6 Transmission coefficient of the gradient CPPW for ethanol deposited on the upper and lower surface for different thicknesses of the ethanol layer ranging from 0.4 to 0.04µm from bottom to top. The inset shows the absorption spectrum of ethanol [25].

Metrics