Abstract

We report on the null reconstruction of polarization volume hologram recorded by orthogonal circularly polarized waves with a large cross angle. Based on the recently developed tensor theory for polarization holography, the disappearance of the reconstruction was analytically verified, where a nice agreement was found between the experimental and theoretical results. When the polarization and intensity hologram attain a balance, not only the null reconstruction but also the faithful reconstruction can be realized by the illumination of the orthogonal reference wave and original reference wave. As a consequence of the hologram recorded without paraxial approximation, the null reconstruction may lead to important applications, such as a potential enhancement in optical storage capacity for volume holograms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of the null reconstruction effect of an orthogonal elliptical polarization hologram at a large recording angle

Long Shao, Jinliang Zang, Fenglan Fan, Ying Liu, and Xiaodi Tan
Appl. Opt. 58(36) 9983-9989 (2019)

Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram

J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda
Opt. Express 24(2) 1641-1647 (2016)

Investigation of faithful reconstruction in nonparaxial approximation polarization holography

Yifan Hong, Guoguo Kang, Jinliang Zang, Fenglan Fan, Ying Liu, Xiaodi Tan, Tsutomu Shimura, and Kazuo Kuroda
Appl. Opt. 56(36) 10024-10029 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  3. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
    [Crossref]
  4. L. Nikolova and P. S. Ramanujam, Polarization Holography, (Cambridge University Press, 2009).
  5. T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
    [Crossref]
  6. T. Huang and K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
    [Crossref]
  7. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref] [PubMed]
  9. T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
    [Crossref]
  10. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
    [Crossref] [PubMed]
  11. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
    [Crossref] [PubMed]
  12. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
    [Crossref]
  13. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
    [Crossref] [PubMed]
  14. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
    [Crossref]
  15. K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
    [Crossref]
  16. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
    [Crossref] [PubMed]
  17. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
    [Crossref]
  18. S. H. Lin, P. L. Chen, and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).
  19. H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
    [Crossref]
  20. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40(14), 2310–2315 (2001).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2011 (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

2009 (1)

S. H. Lin, P. L. Chen, and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).

2007 (1)

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

2005 (1)

2003 (1)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

2001 (1)

1997 (1)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

1996 (1)

1995 (1)

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

1993 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

1986 (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

1985 (1)

1984 (2)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Andruzzi, F.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
[Crossref] [PubMed]

Barada, D.

Chen, P. L.

S. H. Lin, P. L. Chen, and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).

Chi, S.

Cho, S. L.

Chou, S. F.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Dragostinova, V.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

Fujimura, R.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Fukuda, T.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Hayasaki, Y.

Horimai, H.

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Hsiao, Y. N.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Hsu, K. Y.

S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
[Crossref] [PubMed]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Huang, T.

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Huang and K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
[Crossref]

Hvilsted, S.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
[Crossref] [PubMed]

Ide, M.

Ivanov, M.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
[Crossref] [PubMed]

Kuroda, K.

Li, J.

Lin, C. M.

Lin, J. H.

Lin, S. H.

S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
[Crossref] [PubMed]

S. H. Lin, P. L. Chen, and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Matoba, O.

Matsuhashi, Y.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Nikolova, L.

Ochiai, T.

Okada-Shudo, Y.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Ramanujam, P. S.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35(20), 3835–3840 (1996).
[Crossref] [PubMed]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Shimura, T.

Stoyanova, K.

Tan, X.

Todorov, T.

Tomova, N.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Wagner, K. H.

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Huang and K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
[Crossref]

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Yatagai, T.

Appl. Opt. (6)

IEEE J. Quantum Electron. (2)

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

IEEE Trans. Magn. (1)

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Opt. Eng. (2)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

S. H. Lin, P. L. Chen, and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48(3), 035802 (2009).

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Opt. Rev. (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Other (2)

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

L. Nikolova and P. S. Ramanujam, Polarization Holography, (Cambridge University Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of polarization holography: (a) recording, (b) reconstruction.
Fig. 2
Fig. 2 Experimental setup of polarization holography based on the orthogonal circularly polarized wave: HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarization beam splitter; P, polarizer.
Fig. 3
Fig. 3 Reconstructed by the original reference wave (a) and orthogonal reference wave (b).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E=Oexp(i k O ·r)+Rexp(i k R ·r).
[ ε ]=( n 0 2 +α|E | 2 )1+β(E E * + E * E)
k F = k R , k S = k O , θ F = θ R , θ S = θ O .
Sβ( R * ·F)O+{α(O· R * )F+β(O·F) R * [(α(O· R * )F+β(O·F) R * )· k ^ O ] k ^ O }
s j =( 0 1 0 ), p j =( cos θ j 0 sin θ j )
O= 1 2 ( s O +i p O ),R= 1 2 ( s R i p R ).
F=l s F +m e iφ p F
S{αl[1cos( θ O θ R )]+2βl+iβm e iφ [1+cos( θ O θ R )]} s O +{αm e iφ cos( θ O θ R )[1cos( θ O θ R )]+iβl[1+cos( θ O θ R )] βm e iφ [1+ cos 2 ( θ O θ R )} p O .
αl[1cos( θ O θ R )]+2βl+iβm e iφ [1+cos( θ O θ R )]=0,
αm e iφ cos( θ O θ R )[1cos( θ O θ R )]+iβl[1+cos( θ O θ R )]βm e iφ [1+ cos 2 ( θ O θ R )]=0.
l=m , φ= π 2 .
l=m , φ= π 2 , α+β=0.
S[β+ 1 4 (α+β)(1+ cos 2 ( θ O θ R )) 1 2 (αβ)cos( θ O θ R )]l + 1 4 (α+β)(1 cos 2 ( θ O θ R ))r,
S ' 1 4 (α+β)(1 cos 2 ( θ O θ R ))l+ 1 4 (α+β) (1cos( θ O θ R )) 2 r
I L [β+ 1 4 (α+β)(1+ cos 2 ( θ O θ R )) 1 2 (αβ)cos( θ O θ R )] 2 I F ,
I R 1 16 (α+β) 2 (1 cos 2 ( θ O θ R )) 2 I F
I L ' 1 16 (α+β) 2 (1 cos 2 ( θ O θ R )) 2 I F ' ,
I R ' 1 16 (α+β) 2 (1cos( θ O θ R )) 4 I F '
I L β 2 [1+cos( θ O θ R )] 2 I F ,
I R =0,
I L ' =0,
I R ' =0.

Metrics