Abstract

We analyze the inter-core crosstalk in homogeneous multi-core two-mode fibers (MC-TMFs) under bent condition by using the coupled-mode equations. In particular, we investigate the effects of the intra-core mode coupling on the inter-core crosstalk for two different types of MC-TMFs at various bending radii. The results show that the inter-core homo-mode crosstalk of LP11 mode is dominant under the gentle fiber bending condition due to its large effective area. However, as the fiber bending becomes tight, the intra-core mode coupling is significantly enhanced and consequently makes all the inter-core crosstalk levels comparable to each other regardless of the mode. A similar tendency is observed at a reduced bending radius when the difference in the propagation constants between modes is large and core pitch is small.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 22(4) 4329-4341 (2014)

Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Yoshimichi Amma, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 23(14) 17783-17792 (2015)

Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers

Feihong Ye, Jiajing Tu, Kunimasa Saitoh, and Toshio Morioka
Opt. Express 22(19) 23007-23018 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
    [Crossref]
  2. R. Ryf, N. K. Fontaine, H. Chen, B. Guan, S. Randel, N. Sauer, S.J.B. Yoo, A. Koonen, R. Delbue, P. Pupalaikis, A. Sureka, R. Shubochkin, Y. Sun, and R. Lingle, “23 Tbit/s transmission over 17-km conventional 50 μm graded-index multimode fiber,” OFC/NFOEC 2014, paper Th5B.1.
  3. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
    [Crossref]
  4. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core x 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” OFC/NFOEC 2014, paper Th5B.2.
  5. Y. Sasaki, K. Takenaga, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled few-mode multi-core fiber,” Opt. Express 20(26), B77–B84 (2012).
    [Crossref] [PubMed]
  6. K. Mukasa, K. Imamura, and R. Sugizaki, “Multi-core few-mode optical fibers with large Aeff,” ECOC 2012, paper. P1.08.
  7. J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
    [Crossref] [PubMed]
  8. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  9. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010).
    [Crossref] [PubMed]
  10. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).
    [Crossref]
  11. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
    [Crossref] [PubMed]
  12. K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
    [Crossref]
  13. J. H. Chang, S. H. Bae, D. H. Sim, H. Kim, and Y. C. Chung, “Analysis of inter-core crosstalk in homogeneous multi-core two-mode fiber under bent condition,” OFC/NFOEC 2015, paper W4I.4.
  14. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [Crossref]
  15. D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
    [Crossref]
  16. P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-mode fiber for uncoupled mode-division multiplexing transmission,” ECOC 2011, paper. Tu.5.LeCervin.7.
  17. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP,” J. Lightwave Technol. 32(14), 2468–2479 (2014).
    [Crossref]

2014 (2)

2012 (4)

Y. Sasaki, K. Takenaga, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled few-mode multi-core fiber,” Opt. Express 20(26), B77–B84 (2012).
[Crossref] [PubMed]

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).
[Crossref]

2011 (2)

2010 (1)

1994 (1)

1977 (1)

K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
[Crossref]

1973 (1)

D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
[Crossref]

Amezcua-Correa, R.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Antonio-Lopez, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Arrioja, D. M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Bai, N.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Fini, J. M.

Guan, N.

Hayashi, T.

Huang, W.-P.

Koshiba, M.

Li, G.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Linares, J.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Marcuse, D.

D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
[Crossref]

Mateo, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Matsuo, S.

Montero, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Mori, T.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Ogawa, K.

K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
[Crossref]

Poletti, F.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Richardson, M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Saitoh, K.

Sakamoto, T.

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Schulzgen, A.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Shimakawa, O.

Takenaga, K.

Taru, T.

Taunay, T. F.

Tu, J.

Wada, M.

Winzer, P. J.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Xia, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Yamamoto, F.

Yamamoto, T.

Yan, M. F.

Zhou, X.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Zhu, B.

Bell Syst. Tech. J. (2)

K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell Syst. Tech. J. 56(5), 729–745 (1977).
[Crossref]

D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
[Crossref]

IEEE Commun. Mag. (1)

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

IEEE Photon. J. (1)

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Other (5)

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core x 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” OFC/NFOEC 2014, paper Th5B.2.

K. Mukasa, K. Imamura, and R. Sugizaki, “Multi-core few-mode optical fibers with large Aeff,” ECOC 2012, paper. P1.08.

R. Ryf, N. K. Fontaine, H. Chen, B. Guan, S. Randel, N. Sauer, S.J.B. Yoo, A. Koonen, R. Delbue, P. Pupalaikis, A. Sureka, R. Shubochkin, Y. Sun, and R. Lingle, “23 Tbit/s transmission over 17-km conventional 50 μm graded-index multimode fiber,” OFC/NFOEC 2014, paper Th5B.1.

P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-mode fiber for uncoupled mode-division multiplexing transmission,” ECOC 2011, paper. Tu.5.LeCervin.7.

J. H. Chang, S. H. Bae, D. H. Sim, H. Kim, and Y. C. Chung, “Analysis of inter-core crosstalk in homogeneous multi-core two-mode fiber under bent condition,” OFC/NFOEC 2015, paper W4I.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The optical power of each spatial mode in the two-core two-mode fiber as a function of the propagation distance. The LP11 mode is launched into the core A, and the results are normalized by the input power of LP11 mode. Refer to the text for the detailed parameters of this two-core fiber.
Fig. 2
Fig. 2 Coupling coefficient between LP01 and LP11 modes as a function of the relative angle between the modes. The cores are assumed to have core diameters of 16.76 µm and the index differences of 0.3%. The core pitch is 55 µm. The inset shows how the relative angle θ is defined.
Fig. 3
Fig. 3 Simulation model for calculating the inter-core and intra-core crosstalk in multi-core two-mode fiber.
Fig. 4
Fig. 4 Inter-core crosstalk for LP01 mode as a function of propagation distances for various distances between mode couplers.
Fig. 5
Fig. 5 Inter-core crosstalk as a function of bending radius for (a) fiber I and (b) fiber II.
Fig. 6
Fig. 6 Inter-core crosstalk of fiber I as a function of the transmission distance for various bending radii.

Tables (1)

Tables Icon

Table 1 Fiber parameters at the wavelength of 1550 nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L C = 2π 4 | κ (μ)(ν) | 2 + ( β μA β νB ) 2
( A 01A A 11A ) =j( κ (01)(01) e j( ϕ 01A ϕ 01B ) κ (01)(11) e jΔβz e j( ϕ 01A ϕ 11B ) κ (11)(01) e jΔβz e j( ϕ 11A ϕ 01B ) κ (11)(11) e j( ϕ 11A ϕ 11B ) )( A 01B A 11B )
( A 01B A 11B ) =j( κ (01)(01) e j( ϕ 01B ϕ 01A ) κ (01)(11) e jΔβz e j( ϕ 01B ϕ 11A ) κ (11)(01) e jΔβz e j( ϕ 11B ϕ 01A ) κ (11)(11) e j( ϕ 11B ϕ 11A ) )( A 01A A 11A )
M=( 1X X X 1X )

Metrics