Abstract

Here we analyze the potential of a new fabrication method for high resolution zone plates with high aspect ratios based on near field stacking of frequency doubled atomic layer deposited (ALD) zone plates. The proposed method enables reduction of the effective zone period by a factor of four with two zone plate layers compared to the initial e-beam lithography exposed outermost zone period. It also overcomes the problem that very small zone widths with high aspect ratios have to be fabricated for high-resolution hard X-ray microscopy. Using rigorous coupled wave theory, we have analyzed the diffraction behavior of these near field stacked zone plates and investigated strategies to optimize fabrication parameters to compensate for separation of stacked zone plates. The calculations performed for 8 keV photon energy and effective outermost zone widths of 28 nm and 15 nm predict diffraction efficiencies ≥ 20% suggesting that such optics could find widespread practical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

Sophie-Charlotte Gleber, Michael Wojcik, Jie Liu, Chris Roehrig, Marvin Cummings, Joan Vila-Comamala, Kenan Li, Barry Lai, Deming Shu, and Stefan Vogt
Opt. Express 22(23) 28142-28153 (2014)

Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime

Joan Vila-Comamala, Sergey Gorelick, Elina Färm, Cameron M. Kewish, Ana Diaz, Ray Barrett, Vitaliy A. Guzenko, Mikko Ritala, and Christian David
Opt. Express 19(1) 175-184 (2011)

High resolution double-sided diffractive optics for hard X-ray microscopy

Istvan Mohacsi, Ismo Vartiainen, Manuel Guizar-Sicairos, Petri Karvinen, Vitaliy A. Guzenko, Elisabeth Müller, Elina Färm, Mikko Ritala, Cameron M. Kewish, Andrea Somogyi, and Christian David
Opt. Express 23(2) 776-786 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Proceedings of the 10th International Conference on X-ray Microscopy, I. Mcnulty, C. Eyberger, B. Lai, eds., AIP Conf. Proc.1365 (2011).
  2. A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
    [Crossref]
  3. Proceedings of the 11th International Conference on X-ray Microscopy, H. Xu, Z. Wu and R. Tai, eds., Journal of Physics: Conference Series 463 (2013).
  4. W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, and P. Naulleau, “Real space soft x-ray imaging at 10 nm spatial resolution,” Opt. Express 20(9), 9777–9783 (2012).
    [Crossref] [PubMed]
  5. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
    [Crossref] [PubMed]
  6. S. Rehbein, P. Guttmann, S. Werner, and G. Schneider, “Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination,” Opt. Express 20(6), 5830–5839 (2012).
    [Crossref] [PubMed]
  7. J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
    [Crossref] [PubMed]
  8. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
    [Crossref]
  9. J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
    [Crossref] [PubMed]
  10. S.-C. Gleber, M. Wojcik, J. Liu, C. Roehrig, M. Cummings, J. Vila-Comamala, K. Li, B. Lai, D. Shu, and S. Vogt, “Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime,” Opt. Express 22(23), 28142–28153 (2014).
    [Crossref] [PubMed]
  11. S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7, 528–535 (2014).
    [Crossref]
  12. I. Mohacsi, I. Vartiainen, M. Guizar-Sicairos, P. Karvinen, V. A. Guzenko, E. Müller, E. Färm, M. Ritala, C. M. Kewish, A. Somogyi, and C. David, “High resolution double-sided diffractive optics for hard X-ray microscopy,” Opt. Express 23(2), 776–786 (2015).
    [Crossref]
  13. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
    [Crossref] [PubMed]
  14. M. Feser and A. Lyon, “Stacked zone plates for pitch frequency multiplication,” US Patent 2014/0126703 A1.
  15. G. Schneider, “Zone plates with high efficiency in high orders of diffraction described by dynamical theory,” Appl. Phys. Lett. 71(16), 2242–2244 (1997).
    [Crossref]
  16. D. Fluckiger, “GSOLVER software package”, http://www.gsolver.com/ , accessed 2/17/15.
  17. J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am. 64(3), 301–309 (1974).
    [Crossref]
  18. J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
    [Crossref]
  19. G. Schneider, S. Rehbein, and S. Werner, “Volume Effects in Zone Plates,” in Modern Developments in X-Ray and Neutron Optiks, A. Erko, M. Idir, T. Krist, A. G. Michette, eds. (Springer Berlin/Heidelberg, 2008), pp. 137–171.

2015 (1)

2014 (2)

2013 (1)

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (1)

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[Crossref]

2009 (1)

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

2007 (2)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

2002 (1)

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

1997 (1)

G. Schneider, “Zone plates with high efficiency in high orders of diffraction described by dynamical theory,” Appl. Phys. Lett. 71(16), 2242–2244 (1997).
[Crossref]

1974 (1)

Anderson, E.

Attwood, D.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[Crossref]

Barrett, R.

Cai, Z.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Chao, W.

Chen, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Cummings, M.

David, C.

I. Mohacsi, I. Vartiainen, M. Guizar-Sicairos, P. Karvinen, V. A. Guzenko, E. Müller, E. Färm, M. Ritala, C. M. Kewish, A. Somogyi, and C. David, “High resolution double-sided diffractive optics for hard X-ray microscopy,” Opt. Express 23(2), 776–786 (2015).
[Crossref]

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Diaz, A.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
[Crossref] [PubMed]

Färm, E.

Feng, Y.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Feser, M.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Fink, R. H.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

Fischer, P.

Gleber, S.-C.

Gorelick, S.

Guizar-Sicairos, M.

I. Mohacsi, I. Vartiainen, M. Guizar-Sicairos, P. Karvinen, V. A. Guzenko, E. Müller, E. Färm, M. Ritala, C. M. Kewish, A. Somogyi, and C. David, “High resolution double-sided diffractive optics for hard X-ray microscopy,” Opt. Express 23(2), 776–786 (2015).
[Crossref]

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

Guttmann, P.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7, 528–535 (2014).
[Crossref]

S. Rehbein, P. Guttmann, S. Werner, and G. Schneider, “Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination,” Opt. Express 20(6), 5830–5839 (2012).
[Crossref] [PubMed]

Guzenko, V. A.

Jefimovs, K.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Karvinen, P.

Kewish, C. M.

Kirz, J.

Lai, B.

Li, K.

Liu, J.

Lyon, A.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Maser, J.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Massdorf, A.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

Mohacsi, I.

Müller, E.

Naulleau, P.

Pilvi, T.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Raabe, J.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Rehbein, S.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7, 528–535 (2014).
[Crossref]

S. Rehbein, P. Guttmann, S. Werner, and G. Schneider, “Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination,” Opt. Express 20(6), 5830–5839 (2012).
[Crossref] [PubMed]

Rekawa, S.

Rishton, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Ritala, M.

I. Mohacsi, I. Vartiainen, M. Guizar-Sicairos, P. Karvinen, V. A. Guzenko, E. Müller, E. Färm, M. Ritala, C. M. Kewish, A. Somogyi, and C. David, “High resolution double-sided diffractive optics for hard X-ray microscopy,” Opt. Express 23(2), 776–786 (2015).
[Crossref]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Rodrigues, W.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Roehrig, C.

Sakdinawat, A.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[Crossref]

Sassolini, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Schneider, G.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7, 528–535 (2014).
[Crossref]

S. Rehbein, P. Guttmann, S. Werner, and G. Schneider, “Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination,” Opt. Express 20(6), 5830–5839 (2012).
[Crossref] [PubMed]

G. Schneider, “Zone plates with high efficiency in high orders of diffraction described by dynamical theory,” Appl. Phys. Lett. 71(16), 2242–2244 (1997).
[Crossref]

Senoner, M.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

Shastri, S. D.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Shu, D.

Somogyi, A.

Trackhtenberg, E.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Tyliszczak, T.

Vartiainen, I.

Vila-Comamala, J.

S.-C. Gleber, M. Wojcik, J. Liu, C. Roehrig, M. Cummings, J. Vila-Comamala, K. Li, B. Lai, D. Shu, and S. Vogt, “Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime,” Opt. Express 22(23), 28142–28153 (2014).
[Crossref] [PubMed]

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Vogt, S.

Wang, S.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

Werner, S.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7, 528–535 (2014).
[Crossref]

S. Rehbein, P. Guttmann, S. Werner, and G. Schneider, “Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination,” Opt. Express 20(6), 5830–5839 (2012).
[Crossref] [PubMed]

Wojcik, M.

S.-C. Gleber, M. Wojcik, J. Liu, C. Roehrig, M. Cummings, J. Vila-Comamala, K. Li, B. Lai, D. Shu, and S. Vogt, “Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime,” Opt. Express 22(23), 28142–28153 (2014).
[Crossref] [PubMed]

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

Xu, S.

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Yun, W.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Zeng, X.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Appl. Phys. Lett. (1)

G. Schneider, “Zone plates with high efficiency in high orders of diffraction described by dynamical theory,” Appl. Phys. Lett. 71(16), 2242–2244 (1997).
[Crossref]

J. Opt. Soc. Am. (1)

J. Synchrotron Radiat. (1)

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C. M. Kewish, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Radiat. 20(3), 397–404 (2013).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004–2007 (2007).
[Crossref]

Nano Research (1)

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Research 7, 528–535 (2014).
[Crossref]

Nat. Photonics (1)

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[Crossref]

Opt. Express (5)

Phys. Rev. Lett. (1)

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, and C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Maser, B. Lai, W. Yun, S. D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and E. Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. SPIE 4783, 74–81 (2002).
[Crossref]

Ultramicroscopy (1)

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Massdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[Crossref] [PubMed]

Other (5)

Proceedings of the 10th International Conference on X-ray Microscopy, I. Mcnulty, C. Eyberger, B. Lai, eds., AIP Conf. Proc.1365 (2011).

Proceedings of the 11th International Conference on X-ray Microscopy, H. Xu, Z. Wu and R. Tai, eds., Journal of Physics: Conference Series 463 (2013).

M. Feser and A. Lyon, “Stacked zone plates for pitch frequency multiplication,” US Patent 2014/0126703 A1.

D. Fluckiger, “GSOLVER software package”, http://www.gsolver.com/ , accessed 2/17/15.

G. Schneider, S. Rehbein, and S. Werner, “Volume Effects in Zone Plates,” in Modern Developments in X-Ray and Neutron Optiks, A. Erko, M. Idir, T. Krist, A. G. Michette, eds. (Springer Berlin/Heidelberg, 2008), pp. 137–171.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of two stacked zone plates fabricated by iridium ALD coated HSQ structures. The iridium layer is shown in blue color, the HSQ in gray color. The left panel shows the innermost-zone stacking of the two zone plates, while the right panel shows the outermost zone stacking. Note that the outer rings of the stacked iridium zone plates (right top and middle) are equivalent to a single zone plate with four fold smaller period (right, bottom). For illustration, parameters suitable for 8keV imaging were chosen to yield a highly efficient 15nm outermost zone width zone plate.
Fig. 2
Fig. 2 Illustration of the zone plate parameters used for the diffraction efficiency calculations. On the left, a zone plate with constant iridium zone width Δ ris shown (solid blue lines are the iridium zones). On the right, two stacked zone plates separated by a distance Δd are shown. Superposition of the two stacked zone plate patterns results in the zone plate pattern shown on the left. Efficiency calculations were performed for the outermost zones marked by the red box. These zones have a zone width of Δr and a zone thickness of Δt. The outermost zone period of the left zone plate is 2∙Δr and the period of the outermost structures of each of the two stacked zone plates on the right is 4∙Δr.
Fig. 3
Fig. 3 Calculated 2nd order diffraction efficiency as a function of the distance between two stacked zone plates. The curves show the diffraction efficiency of the outermost zones for three different zone plate stacks (green, red, blue) with the indicated outermost zone widths (Δr) and thicknesses (Δt).
Fig. 4
Fig. 4 Contour plot of the diffraction efficiency of 15 nm outermost zones as a function of both the distance Δd and the reduction in radii R of the second zone plate pattern within the stack. The magenta line shows the maximized efficiency in the colorized contour plot (bottom). The maximized efficiency is additionally shown in the 2D-plot at the top.
Fig. 5
Fig. 5 Diffraction efficiency of 7 nm outermost zones as a function the reduction in radii R of the second zone plate pattern within the stack at the distance Δd = 0 nm. The maximal diffraction efficiency of 13% is obtained for R = 60%.
Fig. 6
Fig. 6 Calculated 1st, 2nd and 3rd order diffraction efficiency of the zone plate stack with Δr = 7 nm zone width as a function of the distance between two stacked zone plates. The zones of the stack are illustrated in blue color on the left.
Fig. 7
Fig. 7 Illustration of a more realistic zone profile of a zone plate stack with zones fabricated by an HSQ/ALD process.

Tables (1)

Tables Icon

Table 1 Efficiency of iridium zone plate pair with distance Δd = 3 μm for the profiles shown in Fig. 4 and Fig. 7 at 8 keV photon energy

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0 N sin 2 (π dr N n/(λf) )dn/N = (1/2 +2/ π 2 ) = 0.702 = const

Metrics