Abstract

Optical switches based on tunable multimode interference (MMI) couplers can simultaneously reduce the footprint and increase the tolerance against fabrication deviations. Here, a compact 2x2 silicon switch based on a thermo-optically tunable MMI structure with a footprint of only 0.005mm2 is proposed and demonstrated. The MMI structure has been optimized using a silica trench acting as a thermal isolator without introducing any substantial loss penalty or crosstalk degradation. Furthermore, the electrodes performance have significantly been improved via engineering the heater geometry and using two metallization steps. Thereby, a drastic power consumption reduction of around 90% has been demonstrated yielding to values as low as 24.9 mW. Furthermore, very fast switching times of only 1.19 µs have also been achieved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A compact thermo-optical multimode-interference silicon-based 1×4 nano-photonic switch

Haifeng Zhou, Junfeng Song, Edward K. S. Chee, Chao Li, Huijuan Zhang, and Guoqiang Lo
Opt. Express 21(18) 21403-21413 (2013)

Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch

Ke Liu, Chenglong Zhang, Sixuan Mu, Shuang Wang, and Volker J. Sorger
Opt. Express 24(14) 15845-15853 (2016)

Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform

Maxime Jacques, Alireza Samani, Eslam El-Fiky, David Patel, Zhenping Xing, and David V. Plant
Opt. Express 27(8) 10456-10471 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
    [Crossref] [PubMed]
  2. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
    [Crossref] [PubMed]
  3. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [Crossref] [PubMed]
  4. A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
    [Crossref]
  5. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
    [Crossref] [PubMed]
  6. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [Crossref] [PubMed]
  7. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
    [Crossref] [PubMed]
  8. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18(24), 25225–25231 (2010).
    [Crossref] [PubMed]
  9. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
    [Crossref] [PubMed]
  10. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
    [Crossref] [PubMed]
  11. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22(9), 10487–10493 (2014).
    [Crossref] [PubMed]
  12. K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23(7), 9086–9092 (2015).
    [Crossref] [PubMed]
  13. L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
    [Crossref]
  14. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
    [Crossref]
  15. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  16. J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700–707 (2001).
    [Crossref]
  17. D. A. May-Arrioja and P. Likamwa, “Reconfigurable 3-dB MMI splitter,” in Proc. IEEE/LEOS Summer Topical Meetings (IEEE, 2008), pp. 21–23.
  18. F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
    [Crossref]
  19. Á. Rosa, A. Brimont, A. Griol, and P. Sanchis, “Optimized micro-heater structures for tunable silicon multimode interferometers,” in Proc. IEEE Group IV Photonics (IEEE, 2014), pp. 91–92.
    [Crossref]
  20. Á. Rosa, A. Griol, A. M. Gutierrez, A. Brimont, and P. Sanchis, “Silicon 2x2 optical switch based on optimized multimode interference coupler to minimize power consumption,” in European Conference on Optical Communications (2015), paper P.2.17.
  21. A. Wasserman, Thermal Physics: Concepts and Practice (Cambridge University, 2012).

2015 (4)

2014 (1)

2013 (1)

2011 (2)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

2010 (2)

2009 (2)

2007 (1)

2006 (1)

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

2001 (1)

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1994 (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Asghari, M.

Assefa, S.

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Baehr-Jones, T.

Bergman, K.

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Besse, P. A.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Biberman, A.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Brimont, A.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
[Crossref]

Á. Rosa, A. Brimont, A. Griol, and P. Sanchis, “Optimized micro-heater structures for tunable silicon multimode interferometers,” in Proc. IEEE Group IV Photonics (IEEE, 2014), pp. 91–92.
[Crossref]

Calhoun, D.

Chan, J.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Cheben, P.

Chen, L.

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Chen, R. T.

Cong, G.

Cunningham, J. E.

Delâge, A.

Densmore, A.

DeRose, C.

Dong, P.

Englund, D.

Feng, D.

Galland, C.

Green, W. M. J.

Griol, A.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
[Crossref]

Á. Rosa, A. Brimont, A. Griol, and P. Sanchis, “Optimized micro-heater structures for tunable silicon multimode interferometers,” in Proc. IEEE Group IV Photonics (IEEE, 2014), pp. 91–92.
[Crossref]

Harris, N. C.

Hendry, R.

Hochberg, M.

Hosseini, A.

Ikeda, K.

Janz, S.

Jiang, X.

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Joyner, C. H.

Kawashima, H.

Kim, S.-H.

Krishnamoorthy, A. V.

Kwong, D.

Lapointe, J.

Lechago, S.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
[Crossref]

Leuthold, J.

Li, G.

Li, Q.

Liang, H.

Liao, S.

Likamwa, P.

D. A. May-Arrioja and P. Likamwa, “Reconfigurable 3-dB MMI splitter,” in Proc. IEEE/LEOS Summer Topical Meetings (IEEE, 2008), pp. 21–23.

Lipson, M.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

Lira, H. L. R.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Luo, Y.

Ma, R.

Ma, Y.

May-Arrioja, D. A.

D. A. May-Arrioja and P. Likamwa, “Reconfigurable 3-dB MMI splitter,” in Proc. IEEE/LEOS Summer Topical Meetings (IEEE, 2008), pp. 21–23.

Melchior, H.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Member, S.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Mower, J.

Namiki, S.

Nielson, G. N.

Nikolova, D.

Ophir, N.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Padmaraju, K.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Preble, S. F.

Raj, K.

Reano, R. M.

Rosa, Á.

Á. Rosa, A. Brimont, A. Griol, and P. Sanchis, “Optimized micro-heater structures for tunable silicon multimode interferometers,” in Proc. IEEE Group IV Photonics (IEEE, 2014), pp. 91–92.
[Crossref]

Rumley, S.

Samadi, P.

Sanchez, L.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
[Crossref]

Sanchis, P.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
[Crossref]

Á. Rosa, A. Brimont, A. Griol, and P. Sanchis, “Optimized micro-heater structures for tunable silicon multimode interferometers,” in Proc. IEEE Group IV Photonics (IEEE, 2014), pp. 91–92.
[Crossref]

Schmid, J. H.

Shafiiha, R.

Shubin, I.

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Soldano, L. B.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

Subbaraman, H.

Sun, J.

Sun, P.

Suzuki, K.

Tanizawa, K.

Thacker, H.

Trotter, D. C.

Vachon, M.

Van Campenhout, J.

Vlasov, Y. A.

Wan, F.

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Wang, M.

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Watts, M. R.

Xu, D.-X.

Xu, X.

Yang, J.

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

Yao, J.

Young, R. W.

Zhang, X.

Zhang, Y.

Zheng, X.

IEEE Photonics J. (1)

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 1–8 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. Wan, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett. 18(2), 421–423 (2006).
[Crossref]

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, S. Member, M. Lipson, S. Member, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photonics Technol. Lett. 23(8), 504–506 (2011).
[Crossref]

J. Lightwave Technol. (3)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[Crossref]

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700–707 (2001).
[Crossref]

Opt. Express (10)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
[Crossref] [PubMed]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
[Crossref] [PubMed]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18(24), 25225–25231 (2010).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
[Crossref] [PubMed]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22(9), 10487–10493 (2014).
[Crossref] [PubMed]

K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23(7), 9086–9092 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (4)

D. A. May-Arrioja and P. Likamwa, “Reconfigurable 3-dB MMI splitter,” in Proc. IEEE/LEOS Summer Topical Meetings (IEEE, 2008), pp. 21–23.

Á. Rosa, A. Brimont, A. Griol, and P. Sanchis, “Optimized micro-heater structures for tunable silicon multimode interferometers,” in Proc. IEEE Group IV Photonics (IEEE, 2014), pp. 91–92.
[Crossref]

Á. Rosa, A. Griol, A. M. Gutierrez, A. Brimont, and P. Sanchis, “Silicon 2x2 optical switch based on optimized multimode interference coupler to minimize power consumption,” in European Conference on Optical Communications (2015), paper P.2.17.

A. Wasserman, Thermal Physics: Concepts and Practice (Cambridge University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Sketch of the tunable MMI and transmission response as a function of the index variation. (b) Crosstalk dependence on the width of the active area where the silicon index is changed.
Fig. 2
Fig. 2 (a) Heat distribution in a transversal cut of the MMI structure, (b) temperature difference between both sides of the MMI along the propagation direction and (c) accumulated phase shift obtained from the temperature difference. Results have been obtained for an applied electrical power of 60.4 mW.
Fig. 3
Fig. 3 (a) Optical field distribution in the conventional MMI structure. (b) Insertion losses versus silica trench dimensions. (c) Optical field distribution in the MMI structure with optimized silica trench.
Fig. 4
Fig. 4 (a) Heat distribution in a transversal cut of the MMI structure with silica trench, (b) longitudinal temperature difference between both sides of the MMI and (c) accumulated phase shift obtained from the temperature difference. Results have been obtained for an applied electrical power of 35.4 mW.
Fig. 5
Fig. 5 (a) Flat heater in the MMI with the silica trench, (b) meander heater in the MMI without silica trench and (c) 2x2 switch with electrodes consisting of the copper pads and the titanium heaters on top of the MMI structure.
Fig. 6
Fig. 6 (a) SEM image of the 2x2 MMI switch with the flat electrodes. The silica trench is shown in the inset. (b) Transversal SEM image of the MMI structure with the titanium heater.
Fig. 7
Fig. 7 Switching response of the MMI structure (a) with silica trench and without silica trench by using titanium pads, (b) with silica trench and electrodes with copper and titanium pads, (c) with silica trench and with the flat and meander heaters, both with copper pads.

Tables (2)

Tables Icon

Table 1 Simulated power consumption for different heater and MMI configurations.

Tables Icon

Table 2 Switching time for measured structures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=k·Δn· L h
Δn= n T ·ΔT

Metrics