Abstract

A fluorescence confocal microendoscope requires a high-performance miniature objective. We present a miniature objective comprising four glass lenses and one plastic aspheric lens. The 0.5 NA objective is achromatized in the wavelength range of 488–550 nm, has a field of view (FOV) of 360 μm, and an outer diameter of 2.6 mm. The assembled miniature objective can resolve features separated by as little as 0.78 μm. The imaging quality of the fluorescence confocal microendoscope with the miniature objective is similar to that of a commercial confocal microscope. It can resolve cellular structures such as crypt structures and epithelial cells.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Achromatized endomicroscope objective for optical biopsy

Matthew Kyrish and Tomasz S. Tkaczyk
Biomed. Opt. Express 4(2) 287-297 (2013)

Low cost, high performance, self-aligning miniature optical systems

Robert T. Kester, Todd Christenson, Rebecca Richards Kortum, and Tomasz S. Tkaczyk
Appl. Opt. 48(18) 3375-3384 (2009)

Design and demonstration of a miniature catheter for a confocal microendoscope

Andrew R. Rouse, Angelique Kano, Joshua A. Udovich, Shona M. Kroto, and Arthur F. Gmitro
Appl. Opt. 43(31) 5763-5771 (2004)

References

  • View by:
  • |
  • |
  • |

  1. B. W. Stewart and C. P. Wild, World Cancer Report 2014, Lyon, France: International Agency for Research on Cancer (World Health Organization, 2014).
  2. G. D. De Palma, “Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract,” World J. Gastroenterol. 15(46), 5770–5775 (2009).
    [Crossref] [PubMed]
  3. P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
    [Crossref] [PubMed]
  4. T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
    [Crossref] [PubMed]
  5. N. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1440001 (2014).
    [Crossref]
  6. M. Kyrish and T. S. Tkaczyk, “Achromatized endomicroscope objective for optical biopsy,” Biomed. Opt. Express 4(2), 287–297 (2013).
    [Crossref] [PubMed]
  7. S. M. Landau, C. Liang, R. T. Kester, T. S. Tkaczyk, and M. R. Descour, “Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy,” Opt. Express 18(5), 4758–4775 (2010).
    [Crossref] [PubMed]
  8. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  9. M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
    [Crossref] [PubMed]
  10. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
    [Crossref] [PubMed]
  11. M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), 2306 (2011).
    [PubMed]
  12. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
    [Crossref]
  13. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
    [Crossref] [PubMed]
  14. D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems,” Biomed. Opt. Express 3(5), 1077–1085 (2012).
    [Crossref] [PubMed]
  15. B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
    [Crossref]
  16. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [Crossref] [PubMed]
  17. C. Liang, Design of Miniature Microscope Objective Optics for Biomedical Imaging (PhD thesis, 2002).
  18. C. Liang, K.-B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41(22), 4603–4610 (2002).
    [Crossref] [PubMed]
  19. A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
    [Crossref]
  20. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
    [Crossref] [PubMed]
  21. T. Y. Wu, A. F. Gmitro, and A. R. Rouse, “An achromatized miniature objective for microendoscopy,” in International Optical Design Conference, 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper IW4A.2.
    [Crossref]
  22. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt. 45(11), 2545–2554 (2006).
    [Crossref] [PubMed]
  23. M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
    [Crossref] [PubMed]
  24. R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48(18), 3375–3384 (2009).
    [Crossref] [PubMed]
  25. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
    [Crossref] [PubMed]
  26. J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
    [Crossref]
  27. A. A. Tanbakuchi, A Surgical Confocal Microlaparoscope for Real-Time Optical Biopsies (PhD thesis, 2009).
  28. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008)
  29. J. M. Geary, Introduction to Lens Design: with Practical ZEMAX (Willmann-Bell, 2002).
  30. A. R. Rouse, Multi-Spectral Confocal Microendoscope for In-Vivo Imaging (PhD thesis, 2004).
  31. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [Crossref] [PubMed]
  32. P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” in Is and Ts Pics Conference (Society for Imaging Science & Technology, 2000), pp. 135–138.
  33. ISO, “Photography—electronic still-picture cameras—resolution measurements,” ISO 12233:2000, http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=33715 .
  34. R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1330008 (2014).
    [Crossref]
  35. J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
    [Crossref] [PubMed]
  36. Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
    [Crossref] [PubMed]
  37. G. Lan, T. F. Mauger, and G. Li, “Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging,” Biomed. Opt. Express 6(9), 3362–3377 (2015).
    [Crossref] [PubMed]
  38. L. Guoqiang, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
    [Crossref]

2015 (2)

2014 (2)

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1330008 (2014).
[Crossref]

N. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1440001 (2014).
[Crossref]

2013 (3)

M. Kyrish and T. S. Tkaczyk, “Achromatized endomicroscope objective for optical biopsy,” Biomed. Opt. Express 4(2), 287–297 (2013).
[Crossref] [PubMed]

M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
[Crossref] [PubMed]

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), 2306 (2011).
[PubMed]

2010 (2)

2009 (3)

R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48(18), 3375–3384 (2009).
[Crossref] [PubMed]

G. D. De Palma, “Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract,” World J. Gastroenterol. 15(46), 5770–5775 (2009).
[Crossref] [PubMed]

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

2008 (2)

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt. 45(11), 2545–2554 (2006).
[Crossref] [PubMed]

2004 (2)

A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
[Crossref] [PubMed]

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

1999 (1)

Abrat, B.

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Barretto, R. P. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Brown, C. M.

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Burns, P. D.

P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” in Is and Ts Pics Conference (Society for Imaging Science & Technology, 2000), pp. 135–138.

Carlson, K. D.

Chang, T. P.

Chen, N.

N. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1440001 (2014).
[Crossref]

Chidley, M. D.

Christenson, T.

Cicchi, R.

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1330008 (2014).
[Crossref]

Contag, C. H.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Crawford, J. M.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

De Palma, G. D.

G. D. De Palma, “Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract,” World J. Gastroenterol. 15(46), 5770–5775 (2009).
[Crossref] [PubMed]

Descour, M. R.

Dobbs, J.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Donaldson, L.

Du, C. B.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Ehlers, A.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Friedland, S.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Fu, L.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Genet, M.

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Gillenwater, A.

Gmitro, A. F.

Guo, Y. T.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Guoqiang, L.

L. Guoqiang, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

Hardy, J.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Hashizume, M.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Honda, H.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Hopkins, M. F.

Hou, X. H.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Howard, S. S.

Hsiung, P. L.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Hughes, M.

Huland, D. M.

Imamura, M.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Jain, S.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Jung, J. C.

Kakeji, Y.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Kano, A.

Kester, R. T.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Koenig, K.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Kortum, R. R.

Kraeplin, A.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Kroto, S. M.

Kyrish, M.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

M. Kyrish and T. S. Tkaczyk, “Achromatized endomicroscope objective for optical biopsy,” Biomed. Opt. Express 4(2), 287–297 (2013).
[Crossref] [PubMed]

Lacombe, F.

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Lan, G.

Landau, S. M.

Le Harzic, R.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Li, G.

Li, Y. Q.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Liang, C.

Liu, H.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Liu, Q.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Loiseau, S.

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Lowe, A. W.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Maehara, Y.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Masunari, A.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Mauger, T. F.

Messerschmidt, B.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Muldoon, T. J.

Nida, D. L.

Osdoit, A.

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Ouzounov, D. G.

Pavlova, I.

Pavone, F. S.

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1330008 (2014).
[Crossref]

Perchant, A.

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Pierce, M.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), 2306 (2011).
[PubMed]

Pierce, M. C.

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Rehman, S.

N. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1440001 (2014).
[Crossref]

Richards-Kortum, R.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), 2306 (2011).
[PubMed]

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Richards-Kortum, R. R.

Riemann, I.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Rivera, D. R.

Rouse, A. R.

Sabharwal, Y. S.

Sahbaie, P.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Schenkl, S.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Schnitzer, M. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[Crossref] [PubMed]

Sheppard, C. J. R.

N. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1440001 (2014).
[Crossref]

Soetikno, R.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Stark, M.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Sung, K.-B.

Tanoue, K.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Tchernook, A.

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

Tkaczyk, T. S.

Udovich, J. A.

Ueda, M.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Utsunomiya, T.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Van Dam, J.

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Wang, J.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Wang, K.

Wang, T. D.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Wang, X.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Webb, W. W.

Williams, M. D.

Wu, A. P.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Xu, C.

Yamaguchi, S.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Yang, G. Z.

Yang, L.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Yang, M.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Yoshida, D.

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Yu, D.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), 2306 (2011).
[PubMed]

Yu, T.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Yuan, J.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Zhang, J. N.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Zhang, J. P.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Zhang, Y.

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Zhao, Y. A.

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (4)

Clin. Gastroenterol. Hepatol. (1)

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Endoscopy (1)

Y. Kakeji, S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume, “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy 38(9), 886–890 (2006).
[Crossref] [PubMed]

Engineering (1)

J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. H. Hou, and L. Fu, “A confocal endoscope for cellular imaging,” Engineering 1(3), 351–360 (2015).
[Crossref]

Gastrointest. Endosc. (1)

J. N. Zhang, Y. Q. Li, Y. A. Zhao, T. Yu, J. P. Zhang, Y. T. Guo, and H. Liu, “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointest. Endosc. 67(6), 843–853 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (2)

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1330008 (2014).
[Crossref]

N. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 07(05), 1440001 (2014).
[Crossref]

J. Vis. Exp. (1)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), 2306 (2011).
[PubMed]

Nat. Med. (1)

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008).
[Crossref] [PubMed]

Nat. Methods (1)

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5–6), 267–273 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. Koenig, “Novel concept of GRIN optical systems for high resolution microendoscopy. Part 1: Physical aspects,” Proc. SPIE 6432, 643202 (2007).
[Crossref]

A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat, and F. Lacombe, “In vivo fibered confocal reflectance imaging: totally non-invasive morphological cellular imaging brought to the endoscopist,” Proc. SPIE 6082, 608208 (2006).
[Crossref]

Prog. Opt. (1)

L. Guoqiang, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

World J. Gastroenterol. (1)

G. D. De Palma, “Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract,” World J. Gastroenterol. 15(46), 5770–5775 (2009).
[Crossref] [PubMed]

Other (9)

B. W. Stewart and C. P. Wild, World Cancer Report 2014, Lyon, France: International Agency for Research on Cancer (World Health Organization, 2014).

C. Liang, Design of Miniature Microscope Objective Optics for Biomedical Imaging (PhD thesis, 2002).

P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” in Is and Ts Pics Conference (Society for Imaging Science & Technology, 2000), pp. 135–138.

ISO, “Photography—electronic still-picture cameras—resolution measurements,” ISO 12233:2000, http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=33715 .

T. Y. Wu, A. F. Gmitro, and A. R. Rouse, “An achromatized miniature objective for microendoscopy,” in International Optical Design Conference, 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper IW4A.2.
[Crossref]

A. A. Tanbakuchi, A Surgical Confocal Microlaparoscope for Real-Time Optical Biopsies (PhD thesis, 2009).

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008)

J. M. Geary, Introduction to Lens Design: with Practical ZEMAX (Willmann-Bell, 2002).

A. R. Rouse, Multi-Spectral Confocal Microendoscope for In-Vivo Imaging (PhD thesis, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the fluorescence confocal microendoscope.
Fig. 2
Fig. 2 Schematic diagram of the miniature objective.
Fig. 3
Fig. 3 Geometric spot diagrams with diffraction-limited Airy disk for four radial image positions: on-axis, 0.5 field, 0.707 field, and full field; Airy radius = 1.235 μm.
Fig. 4
Fig. 4 (a) Modulation transfer function (MTF) plot in image space. (b) Chromatic focal shift in image space. DIFF LIMIT: diffraction limit, T: tangential plane, S: sagittal plane.
Fig. 5
Fig. 5 Predicted field curvature (a) and distortion (b) plots in fiber space.
Fig. 6
Fig. 6 Cross-sectional schematic of the miniature objective assembly.
Fig. 7
Fig. 7 Photographs of the miniature objective. (a) The miniature objective placed next to a C.N.(China) dime to show perspective. (b) Optical probe composed of the miniature objective and the fiber bundle on a ruler to show perspective.
Fig. 8
Fig. 8 Schematic diagram of the system used to test the miniature objective.
Fig. 9
Fig. 9 Miniature objective testing results. (a) Resulting image of the USAF resolution target. (b) Calculated MTF curves from (a).
Fig. 10
Fig. 10 Measured and predicted focal shifts in the image space of the miniature objective.
Fig. 11
Fig. 11 Images of the resolution target taken by the fluorescence confocal microendoscope (a) without the miniature objective and (b) with the miniature objective. The lateral resolution of the fluorescence confocal microendoscope was improvedwith the miniature objective in place.
Fig. 12
Fig. 12 Images of fresh colon tissue taken by the fluorescence confocal microendoscope (a) without the miniature objective and (b) with the miniature objective. (c) Image of fresh colon tissue taken by a commercial confocal microscope. Red arrow: crypt structure, white arrow: superficial epithelial cells.

Tables (4)

Tables Icon

Table 1 Design requirements for the miniature objective.

Tables Icon

Table 2 Lens descriptions.

Tables Icon

Table 3 Tolerances for the miniature objective.

Tables Icon

Table 4 Monte Carlo analysis results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z tissue = z fiber m 2 n tissue = z fiber 3 ,
z image = z object m 2 =4 z object .

Metrics