S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
L. Li, C. Liu, H. Ren, H. Deng, and Q.-H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref]
[PubMed]
C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref]
[PubMed]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref]
[PubMed]
C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]
[PubMed]
D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]
Y.-H. Lin, Y.-L. Liu, and G.-D. J. Su, “Optical zoom module based on two deformable mirrors for mobile device applications,” Appl. Opt. 51(11), 1804–1810 (2012).
[Crossref]
[PubMed]
C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]
F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]
D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
[Crossref]
[PubMed]
K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref]
[PubMed]
J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009).
[Crossref]
[PubMed]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref]
[PubMed]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref]
[PubMed]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]
T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
E. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11(9), 1056–1069 (2003).
[Crossref]
[PubMed]
T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
[Crossref]
J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]
T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref]
[PubMed]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]
F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]
T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]
F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]
[PubMed]
D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]
D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]
[PubMed]
D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]
D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref]
[PubMed]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
L. Li, C. Liu, H. Ren, H. Deng, and Q.-H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref]
[PubMed]
H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref]
[PubMed]
H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[Crossref]
[PubMed]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
Y.-H. Lin, Y.-L. Liu, and G.-D. J. Su, “Optical zoom module based on two deformable mirrors for mobile device applications,” Appl. Opt. 51(11), 1804–1810 (2012).
[Crossref]
[PubMed]
H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
[Crossref]
[PubMed]
J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009).
[Crossref]
[PubMed]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref]
[PubMed]
C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]
F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]
T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]
C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref]
[PubMed]
M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
[Crossref]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]
D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]
D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]
K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref]
[PubMed]
Y.-H. Lin, Y.-L. Liu, and G.-D. J. Su, “Optical zoom module based on two deformable mirrors for mobile device applications,” Appl. Opt. 51(11), 1804–1810 (2012).
[Crossref]
[PubMed]
N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993).
[Crossref]
[PubMed]
G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]
D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]
D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]
C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]
[PubMed]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]
T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]
J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]
C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]
D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]
C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]
X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]
C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref]
[PubMed]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref]
[PubMed]
C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref]
[PubMed]
H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[Crossref]
[PubMed]
E. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11(9), 1056–1069 (2003).
[Crossref]
[PubMed]
J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009).
[Crossref]
[PubMed]
H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
[Crossref]
[PubMed]
L. Li, C. Liu, H. Ren, H. Deng, and Q.-H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref]
[PubMed]
K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref]
[PubMed]
M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
[Crossref]
C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]
T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]
D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]
K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]
[PubMed]
Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]
S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]