Abstract

A method to measure the orientations of transparent ellipsoidal particles using digital holographic microscopy (DHM) is proposed in this study. This approach includes volumetric recording and numerical reconstruction at different depths. Distinctive light scatterings from an ellipsoid with different angles of orientation are analyzed. A focus function is applied to obtain a reconstructed image that contains a bright line parallel to the major axis of the projected particle, which provides in-plane orientation information. An intensity profile is collected along the major axis of the projected particle in the direction of the optical axis, and this profile is then utilized to measure the out-of-plane orientation of the ellipsoid. After being verified for an ellipsoid with known orientations, the proposed method is applied to ellipsoids suspended in a pipe flow with random orientations. This DHM method can extract the essential information of ellipsoids and therefore has great potential applications in particle dynamics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precise measurement of three-dimensional positions of transparent ellipsoidal particles using digital holographic microscopy

Hyeok Jun Byeon, Kyung Won Seo, and Sang Joon Lee
Appl. Opt. 54(8) 2106-2112 (2015)

Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy

Dhananjay Kumar Singh, Caroline C. Ahrens, Wei Li, and Siva A. Vanapalli
Biomed. Opt. Express 8(2) 536-554 (2017)

Surface proximity effect in sedimentation investigated by digital holographic microscopy

Mohammad A. Charsooghi and Ali-Reza Moradi
Appl. Opt. 57(7) B179-B183 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 102(715), 161–179 (1922).
    [Crossref]
  2. E. Hinch and L. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92(03), 591–607 (1979).
    [Crossref]
  3. G. Taylor, “The motion of ellipsoidal particles in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 103(720), 58–61 (1923).
    [Crossref]
  4. R. G. Cox and S. G. Mason, “Suspended particles in fluid flow through tubes,” Annu. Rev. Fluid Mech. 3(1), 291–316 (1971).
    [Crossref]
  5. D. W. Qi and L. S. Luo, “Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows,” J. Fluid Mech. 477, 201–213 (2003).
    [Crossref]
  6. Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
    [Crossref] [PubMed]
  7. H. Huang, X. Yang, and X.-Y. Lu, “Sedimentation of an ellipsoidal particle in narrow tubes,” Phys. Fluids 26(5), 053302 (2014).
    [Crossref]
  8. T. Rosén, F. Lundell, and C. K. Aidun, “Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow,” J. Fluid Mech. 738, 563–590 (2014).
    [Crossref]
  9. C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29(3), 192–203 (1990).
    [Crossref]
  10. B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
    [Crossref]
  11. S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
    [Crossref] [PubMed]
  12. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt. 42(16), 3129–3144 (2003).
    [Crossref] [PubMed]
  13. A. Gillman, K. Matouš, and S. Atkinson, “Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022208 (2013).
    [Crossref] [PubMed]
  14. C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
    [Crossref] [PubMed]
  15. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
    [Crossref]
  16. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
    [Crossref]
  17. Y. S. Choi, K. W. Seo, M. H. Sohn, and S. J. Lee, “Advances in digital holographic micro-PTV for analyzing microscale flows,” Opt. Lasers Eng. 50(1), 39–45 (2012).
    [Crossref]
  18. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
    [Crossref] [PubMed]
  19. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37(4), 752–754 (2012).
    [Crossref] [PubMed]
  20. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15(26), 18275–18282 (2007).
    [Crossref] [PubMed]
  21. A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
    [Crossref]
  22. M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
    [Crossref] [PubMed]
  23. F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18(7), 6555–6562 (2010).
    [Crossref] [PubMed]
  24. M. Molaei and J. Sheng, “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).
    [Crossref] [PubMed]
  25. K. W. Seo, H. J. Byeon, and S. J. Lee, “Measuring the light scattering and orientation of a spheroidal particle using in-line holography,” Opt. Lett. 39(13), 3915–3918 (2014).
    [Crossref] [PubMed]
  26. H. J. Byeon, K. W. Seo, and S. J. Lee, “Precise measurement of three-dimensional positions of transparent ellipsoidal particles using digital holographic microscopy,” Appl. Opt. 54(8), 2106–2112 (2015).
    [Crossref] [PubMed]
  27. J. A. Champion and S. Mitragotri, “Role of target geometry in phagocytosis,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4930–4934 (2006).
    [Crossref] [PubMed]
  28. T. L. Narrow, M. Yoda, and S. I. Abdel-Khalik, “A simple model for the refractive index of sodium iodide aqueous solutions,” Exp. Fluids 28(3), 282–283 (2000).
    [Crossref]
  29. K. L. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55(4), 1704 (2014).
    [Crossref]
  30. J. W. Goodman, Introduction to Fourier Optics (McGrqw-Hill 1996).
  31. U. Schnars and W. P. O. Jueptner, Digital Holography (Springer, 2005).
  32. Y. S. Choi and S. J. Lee, “High-accuracy three-dimensional position measurement of tens of micrometers size transparent microspheres using digital in-line holographic microscopy,” Opt. Lett. 36(21), 4167–4169 (2011).
    [Crossref] [PubMed]
  33. N. Otsu, “A threshold selection method from gray-level histograms,” in Proceedings of IEEE Conference on System Man and Cybernetics (IEEE,1979), pp. 62–66.
  34. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42(5), 827–833 (2003).
    [Crossref] [PubMed]
  35. S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
    [Crossref]

2015 (1)

2014 (7)

K. W. Seo, H. J. Byeon, and S. J. Lee, “Measuring the light scattering and orientation of a spheroidal particle using in-line holography,” Opt. Lett. 39(13), 3915–3918 (2014).
[Crossref] [PubMed]

M. Molaei and J. Sheng, “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).
[Crossref] [PubMed]

K. L. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55(4), 1704 (2014).
[Crossref]

H. Huang, X. Yang, and X.-Y. Lu, “Sedimentation of an ellipsoidal particle in narrow tubes,” Phys. Fluids 26(5), 053302 (2014).
[Crossref]

T. Rosén, F. Lundell, and C. K. Aidun, “Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow,” J. Fluid Mech. 738, 563–590 (2014).
[Crossref]

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

2013 (2)

A. Gillman, K. Matouš, and S. Atkinson, “Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022208 (2013).
[Crossref] [PubMed]

Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
[Crossref] [PubMed]

2012 (5)

Y. S. Choi, K. W. Seo, M. H. Sohn, and S. J. Lee, “Advances in digital holographic micro-PTV for analyzing microscale flows,” Opt. Lasers Eng. 50(1), 39–45 (2012).
[Crossref]

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
[Crossref]

S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
[Crossref] [PubMed]

J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37(4), 752–754 (2012).
[Crossref] [PubMed]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18(7), 6555–6562 (2010).
[Crossref] [PubMed]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

2007 (1)

2006 (1)

J. A. Champion and S. Mitragotri, “Role of target geometry in phagocytosis,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4930–4934 (2006).
[Crossref] [PubMed]

2003 (3)

2000 (1)

T. L. Narrow, M. Yoda, and S. I. Abdel-Khalik, “A simple model for the refractive index of sodium iodide aqueous solutions,” Exp. Fluids 28(3), 282–283 (2000).
[Crossref]

1990 (1)

C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29(3), 192–203 (1990).
[Crossref]

1979 (1)

E. Hinch and L. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92(03), 591–607 (1979).
[Crossref]

1971 (1)

R. G. Cox and S. G. Mason, “Suspended particles in fluid flow through tubes,” Annu. Rev. Fluid Mech. 3(1), 291–316 (1971).
[Crossref]

1923 (1)

G. Taylor, “The motion of ellipsoidal particles in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 103(720), 58–61 (1923).
[Crossref]

1922 (1)

G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 102(715), 161–179 (1922).
[Crossref]

Abdel-Khalik, S. I.

T. L. Narrow, M. Yoda, and S. I. Abdel-Khalik, “A simple model for the refractive index of sodium iodide aqueous solutions,” Exp. Fluids 28(3), 282–283 (2000).
[Crossref]

Aidun, C. K.

T. Rosén, F. Lundell, and C. K. Aidun, “Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow,” J. Fluid Mech. 738, 563–590 (2014).
[Crossref]

Asundi, A. K.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[Crossref] [PubMed]

Atkinson, S.

A. Gillman, K. Matouš, and S. Atkinson, “Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022208 (2013).
[Crossref] [PubMed]

Bai, K. L.

K. L. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55(4), 1704 (2014).
[Crossref]

Barbaro, A.

Boas, D.

Byeon, H. J.

Calzavarini, E.

S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
[Crossref] [PubMed]

Cao, Y.

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Champion, J. A.

J. A. Champion and S. Mitragotri, “Role of target geometry in phagocytosis,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4930–4934 (2006).
[Crossref] [PubMed]

Chaudhary, K.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Cheong, F. C.

Choi, Y. S.

Y. S. Choi, K. W. Seo, M. H. Sohn, and S. J. Lee, “Advances in digital holographic micro-PTV for analyzing microscale flows,” Opt. Lasers Eng. 50(1), 39–45 (2012).
[Crossref]

Y. S. Choi and S. J. Lee, “High-accuracy three-dimensional position measurement of tens of micrometers size transparent microspheres using digital in-line holographic microscopy,” Opt. Lett. 36(21), 4167–4169 (2011).
[Crossref] [PubMed]

Cohen, C.

C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29(3), 192–203 (1990).
[Crossref]

Cox, R. G.

R. G. Cox and S. G. Mason, “Suspended particles in fluid flow through tubes,” Annu. Rev. Fluid Mech. 3(1), 291–316 (1971).
[Crossref]

Darakis, E.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[Crossref] [PubMed]

Dimiduk, T. G.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Ferraro, P.

Finizio, A.

Fung, J.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Garcia-Sucerquia, J.

Gillman, A.

A. Gillman, K. Matouš, and S. Atkinson, “Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022208 (2013).
[Crossref] [PubMed]

Grier, D. G.

Hinch, E.

E. Hinch and L. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92(03), 591–607 (1979).
[Crossref]

Huang, H.

H. Huang, X. Yang, and X.-Y. Lu, “Sedimentation of an ellipsoidal particle in narrow tubes,” Phys. Fluids 26(5), 053302 (2014).
[Crossref]

Iannone, M.

Jeffery, G. B.

G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 102(715), 161–179 (1922).
[Crossref]

Kariwala, V.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[Crossref] [PubMed]

Katz, J.

K. L. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55(4), 1704 (2014).
[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Kempkes, M.

Khanam, T.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[Crossref] [PubMed]

Kilmer, M. E.

Kim, S.

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

Kim, S. H.

Kou, B.

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Kretzschmar, I.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Leal, L.

E. Hinch and L. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92(03), 591–607 (1979).
[Crossref]

Lee, S. H.

Lee, S. J.

Loudet, J. C.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
[Crossref]

Lu, X.-Y.

H. Huang, X. Yang, and X.-Y. Lu, “Sedimentation of an ellipsoidal particle in narrow tubes,” Phys. Fluids 26(5), 053302 (2014).
[Crossref]

Lundell, F.

T. Rosén, F. Lundell, and C. K. Aidun, “Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow,” J. Fluid Mech. 738, 563–590 (2014).
[Crossref]

Luo, L. S.

D. W. Qi and L. S. Luo, “Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows,” J. Fluid Mech. 477, 201–213 (2003).
[Crossref]

Manoharan, V. N.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Mason, S. G.

R. G. Cox and S. G. Mason, “Suspended particles in fluid flow through tubes,” Annu. Rev. Fluid Mech. 3(1), 291–316 (1971).
[Crossref]

Matouš, K.

A. Gillman, K. Matouš, and S. Atkinson, “Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022208 (2013).
[Crossref] [PubMed]

Mazzotti, M.

Memmolo, P.

Meng, H.

Mihiretie, B. M.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
[Crossref]

Miller, E. L.

Mitragotri, S.

J. A. Champion and S. Mitragotri, “Role of target geometry in phagocytosis,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4930–4934 (2006).
[Crossref] [PubMed]

Molaei, M.

Narrow, T. L.

T. L. Narrow, M. Yoda, and S. I. Abdel-Khalik, “A simple model for the refractive index of sodium iodide aqueous solutions,” Exp. Fluids 28(3), 282–283 (2000).
[Crossref]

Naughton, T. J.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[Crossref] [PubMed]

Netti, P. A.

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” in Proceedings of IEEE Conference on System Man and Cybernetics (IEEE,1979), pp. 62–66.

Pan, G.

Parsa, S.

S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
[Crossref] [PubMed]

Paturzo, M.

Pouligny, B.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
[Crossref]

Qi, D. W.

D. W. Qi and L. S. Luo, “Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows,” J. Fluid Mech. 477, 201–213 (2003).
[Crossref]

Rajendran, A.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[Crossref] [PubMed]

Razavi, S.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Restrepo, J. F.

Roichman, Y.

Rosén, T.

T. Rosén, F. Lundell, and C. K. Aidun, “Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow,” J. Fluid Mech. 738, 563–590 (2014).
[Crossref]

Seo, K. W.

Sheng, J.

M. Molaei and J. Sheng, “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).
[Crossref] [PubMed]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Snabre, P.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
[Crossref]

Sohn, M. H.

Y. S. Choi, K. W. Seo, M. H. Sohn, and S. J. Lee, “Advances in digital holographic micro-PTV for analyzing microscale flows,” Opt. Lasers Eng. 50(1), 39–45 (2012).
[Crossref]

Spelt, P. D. M.

Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
[Crossref] [PubMed]

Stover, C. A.

C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29(3), 192–203 (1990).
[Crossref]

Sui, Y.

Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
[Crossref] [PubMed]

Sun, H.

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Taylor, G.

G. Taylor, “The motion of ellipsoidal particles in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 103(720), 58–61 (1923).
[Crossref]

Toschi, F.

S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
[Crossref] [PubMed]

van Blaaderen, A.

van Oostrum, P.

Ventre, M.

Voth, G. A.

S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
[Crossref] [PubMed]

Wang, A.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Wang, W.

Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
[Crossref] [PubMed]

Wang, Y.

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
[Crossref] [PubMed]

Xia, C.

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Yang, S. M.

Yang, X.

H. Huang, X. Yang, and X.-Y. Lu, “Sedimentation of an ellipsoidal particle in narrow tubes,” Phys. Fluids 26(5), 053302 (2014).
[Crossref]

Yi, G. R.

Yoda, M.

T. L. Narrow, M. Yoda, and S. I. Abdel-Khalik, “A simple model for the refractive index of sodium iodide aqueous solutions,” Exp. Fluids 28(3), 282–283 (2000).
[Crossref]

Zhu, K.

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Annu. Rev. Fluid Mech. (2)

R. G. Cox and S. G. Mason, “Suspended particles in fluid flow through tubes,” Annu. Rev. Fluid Mech. 3(1), 291–316 (1971).
[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Appl. Opt. (3)

Chem. Eng. Sci. (1)

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[Crossref]

Europhys. Lett. (1)

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” Europhys. Lett. 100(4), 48005 (2012).
[Crossref]

Exp. Fluids (3)

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

T. L. Narrow, M. Yoda, and S. I. Abdel-Khalik, “A simple model for the refractive index of sodium iodide aqueous solutions,” Exp. Fluids 28(3), 282–283 (2000).
[Crossref]

K. L. Bai and J. Katz, “On the refractive index of sodium iodide solutions for index matching in PIV,” Exp. Fluids 55(4), 1704 (2014).
[Crossref]

J. Fluid Mech. (3)

D. W. Qi and L. S. Luo, “Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows,” J. Fluid Mech. 477, 201–213 (2003).
[Crossref]

E. Hinch and L. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92(03), 591–607 (1979).
[Crossref]

T. Rosén, F. Lundell, and C. K. Aidun, “Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow,” J. Fluid Mech. 738, 563–590 (2014).
[Crossref]

J. Quant. Spectrosc. Ra. (1)

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Ra. 146, 499–509 (2014).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

Y. S. Choi, K. W. Seo, M. H. Sohn, and S. J. Lee, “Advances in digital holographic micro-PTV for analyzing microscale flows,” Opt. Lasers Eng. 50(1), 39–45 (2012).
[Crossref]

Opt. Lett. (3)

Phys. Fluids (1)

H. Huang, X. Yang, and X.-Y. Lu, “Sedimentation of an ellipsoidal particle in narrow tubes,” Phys. Fluids 26(5), 053302 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

Z. Wang, Y. Sui, P. D. M. Spelt, and W. Wang, “Three-dimensional dynamics of oblate and prolate capsules in shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(5), 053021 (2013).
[Crossref] [PubMed]

A. Gillman, K. Matouš, and S. Atkinson, “Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 022208 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109(13), 134501 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. A. Champion and S. Mitragotri, “Role of target geometry in phagocytosis,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4930–4934 (2006).
[Crossref] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (2)

G. Taylor, “The motion of ellipsoidal particles in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 103(720), 58–61 (1923).
[Crossref]

G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 102(715), 161–179 (1922).
[Crossref]

Rheol. Acta (1)

C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29(3), 192–203 (1990).
[Crossref]

Soft Matter (1)

C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, “X-ray tomography study of the random packing structure of ellipsoids,” Soft Matter 10(7), 990–996 (2014).
[Crossref] [PubMed]

Other (3)

N. Otsu, “A threshold selection method from gray-level histograms,” in Proceedings of IEEE Conference on System Man and Cybernetics (IEEE,1979), pp. 62–66.

J. W. Goodman, Introduction to Fourier Optics (McGrqw-Hill 1996).

U. Schnars and W. P. O. Jueptner, Digital Holography (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Definition of in-plane and out-of-plane orientations of an ellipsoid and coordinate system.
Fig. 2
Fig. 2 Schematic diagram of digital in-line holographic microscopy and a test sample.
Fig. 3
Fig. 3 Hologram images of an ellipsoid before the interpolation (a), after the interpolation (b). Intensity profile along the major axis of the projected ellipsoid in the direction of the optic axis before the interpolation (c), after the interpolation (d). Scale bar is 5μm.
Fig. 4
Fig. 4 (a) Optical image of an ellipsoid tested in the study. (b) Hologram image of the same ellipsoid. (c-d) Reconstructed images at different reconstruction depths of z = 21.5, 42μm, at which the focus value profile has clear peaks (e). Scale bar is 10μm.
Fig. 5
Fig. 5 Experimental procedure to measure in-plane orientation. (a) Reconstructed image with a bright line. (b) Binary image obtained by applying threshold method. (c) Measurement of in-plane orientation (θ) using ellipse fitting. Scale bar is 10μm.
Fig. 6
Fig. 6 Variations of intensity profiles along the major axis of the projected ellipsoid at various tilted orientations.
Fig. 7
Fig. 7 Variations of measured out-of-plane orientation according to tilted angles for different threshold values.
Fig. 8
Fig. 8 Experimental procedure to measure out-of-plane orientation. (a) Intensity profile along the major axis of the projected ellipsoid with a tilted angle of 30°. (b) Selected points whose intensity is higher than the threshold value are depicted as black dots. A fitted curve to measured the out-of-plane orientation (ϕ) is colored with red.
Fig. 9
Fig. 9 Variations of measured out-of-plane orientation according to tilted angles for different threshold values.
Fig. 10
Fig. 10 (a) Consecutive holograms of a rotating ellipsoid in a pipe flow. (b) Reconstructed images used to measure in-plane orientation. (c) Intensity profiles along the major axis of the projected ellipsoid. (d) 3D perspectives of the randomly oriented ellipsoid, reconstructed by measurement of in-plane and out-of-plane orientations. Scale bar is 10μm.

Tables (2)

Tables Icon

Table 1 Measured out-of-plane orientation and its error according to tilted angle

Tables Icon

Table 2 Measured in-plane and out-of-plane orientations of suspended ellipsoids in a pipe flow

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ( ξ,η )= F 1 [ F{ h( x,y ) }F{ g( ξ,η ) } ]
F{ g( ξ,η ) }=exp{ id 2π λ 1 ( λ f ξ ) 2 ( λ f η ) 2 }
VAR(z)= 1 N x N y x,y [ I( x,y;z ) I ¯ ( z ) ] 2

Metrics