Abstract

Molybdenum disulfide and graphitic carbon nitride (MoS2-g-C3N4) nanocomposites with visible-light induced photocatalytic activity were successfully synthesized by a facile ultrasonic dispersion method. The crystalline structure and morphology of the MoS2-g-C3N4 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microcopy (TEM), high-resolution TEM (HRTEM) and scanning electron microscopy (SEM). The optical property of the as-prepared nanocomposites was studied by ultraviolet visible diffusion reflection (UV-vis) and photoluminescence(PL) spectrum. It could be observed from the TEM image that the MoS2 nanosheets and g-C3N4 nanoparticles were well combined together. Moreover, the photocatalytic activity of MoS2-g-C3N4 composites was evaluated by the removal of nitric oxide under visible light irradiation (>400nm). The experimental results demonstrated that the nanocomposites with the MoS2 content of 1.5 wt% exhibited optimal photocatalytic activity and the corresponding removal rate of NO achieved 51.67%, higher than that of pure g-C3N4 nanoparticles. A possible photocatalytic mechanism for the MoS2-g-C3N4 nanocomposites with enhanced photocatalytic activity could be ascribed to the hetero-structure of MoS2 and g-C3N4.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-step electrochemical synthesis of graphene oxide-TiO2 nanotubes for improved visible light activity

Imran Ali, Seu-Run Kim, Kyungmin Park, and Jong-Oh Kim
Opt. Mater. Express 7(5) 1535-1546 (2017)

Nano-heterostructured photo-stable CdxZn1−xS heterojunction as a non-photocorrosive visible light active photocatalyst

Metwally Madkour, Tasneem Salih, Fakhreia Al-Sagheer, and Ali Bumajdad
Opt. Mater. Express 6(9) 2857-2870 (2016)

Characterization, uniformity and photo-catalytic properties of graphene/TiO2 nanocomposites via Raman mapping

Xinyu Wang, Jie Zhang, Xiaolei Zhang, and Yong Zhu
Opt. Express 25(18) 21496-21508 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
    [Crossref] [PubMed]
  2. X. Wang, W. Yan, L. Zhang, L. Shi, H. Chen, Y. Zhang, M. Wu, and P. Zhang, “Tunable photocatalytic activity of photochromic Fe-Mn-codoped LiNbO3 nanocrystals,” Opt. Mater. Express 5(10), 2240–2245 (2015).
    [Crossref]
  3. X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
    [Crossref]
  4. J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
    [Crossref]
  5. D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
    [Crossref]
  6. S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
    [Crossref]
  7. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
    [Crossref] [PubMed]
  8. N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
    [Crossref] [PubMed]
  9. P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
    [Crossref]
  10. T. Dittrich, S. Fiechter, and A. Thomas, “Surface photovoltage spectroscopy of carbon nitride powder,” Appl. Phys. Lett. 99(8), 084105 (2011).
    [Crossref]
  11. C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).
  12. P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy,” RSC Advances 2(21), 7933–7947 (2012).
    [Crossref]
  13. S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
    [Crossref] [PubMed]
  14. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂,” Opt. Express 21(4), 4908–4916 (2013).
    [Crossref] [PubMed]
  15. H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, “Optical identification of MoS₂/graphene heterostructure on SiO2/Si substrate,” Opt. Express 22(13), 15969–15974 (2014).
    [Crossref] [PubMed]
  16. J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
    [Crossref]
  17. Z. P. Ling, R. Yang, J. W. Chai, S. J. Wang, W. S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D. Z. Chi, and K. W. Ang, “Large-scale two-dimensional MoS₂ photodetectors by magnetron sputtering,” Opt. Express 23(10), 13580–13586 (2015).
    [Crossref] [PubMed]
  18. L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
    [Crossref]
  19. Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
    [Crossref] [PubMed]
  20. H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
    [Crossref]
  21. H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
    [Crossref] [PubMed]
  22. A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
    [Crossref]
  23. S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
    [Crossref]
  24. S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
    [Crossref] [PubMed]
  25. F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
    [Crossref]
  26. Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
    [Crossref]
  27. F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
    [Crossref] [PubMed]
  28. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
    [Crossref] [PubMed]
  29. Z. H. Ai, W. K. Ho, and S. C. Lee, “Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites,” J. Phys. Chem. C 115(51), 25330–25337 (2011).
    [Crossref]

2016 (2)

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

2015 (8)

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

X. Wang, W. Yan, L. Zhang, L. Shi, H. Chen, Y. Zhang, M. Wu, and P. Zhang, “Tunable photocatalytic activity of photochromic Fe-Mn-codoped LiNbO3 nanocrystals,” Opt. Mater. Express 5(10), 2240–2245 (2015).
[Crossref]

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Z. P. Ling, R. Yang, J. W. Chai, S. J. Wang, W. S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D. Z. Chi, and K. W. Ang, “Large-scale two-dimensional MoS₂ photodetectors by magnetron sputtering,” Opt. Express 23(10), 13580–13586 (2015).
[Crossref] [PubMed]

2014 (4)

H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, “Optical identification of MoS₂/graphene heterostructure on SiO2/Si substrate,” Opt. Express 22(13), 15969–15974 (2014).
[Crossref] [PubMed]

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

2013 (7)

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[Crossref] [PubMed]

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
[Crossref]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂,” Opt. Express 21(4), 4908–4916 (2013).
[Crossref] [PubMed]

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

2012 (2)

P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy,” RSC Advances 2(21), 7933–7947 (2012).
[Crossref]

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

2011 (4)

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Z. H. Ai, W. K. Ho, and S. C. Lee, “Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites,” J. Phys. Chem. C 115(51), 25330–25337 (2011).
[Crossref]

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

T. Dittrich, S. Fiechter, and A. Thomas, “Surface photovoltage spectroscopy of carbon nitride powder,” Appl. Phys. Lett. 99(8), 084105 (2011).
[Crossref]

2009 (1)

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

2000 (1)

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

Ai, Z. H.

Z. H. Ai, W. K. Ho, and S. C. Lee, “Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites,” J. Phys. Chem. C 115(51), 25330–25337 (2011).
[Crossref]

Albrecht, M.

Al-Youbi, A. O.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Ang, K. W.

Antonietti, M.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Asiri, A. M.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Belova, V.

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

Borisova, D.

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

Börner, J.

Böttger, P.

Bratschitsch, R.

Brotchie, A.

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

Cao, S. W.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Chai, J. W.

Chang, C.

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Chang, S.

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Chen, C. K.

Chen, H.

X. Wang, W. Yan, L. Zhang, L. Shi, H. Chen, Y. Zhang, M. Wu, and P. Zhang, “Tunable photocatalytic activity of photochromic Fe-Mn-codoped LiNbO3 nanocrystals,” Opt. Mater. Express 5(10), 2240–2245 (2015).
[Crossref]

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

Chen, H. M.

Chen, W.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Chen, X.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Chen, Y. L.

Cheng, N.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Chi, D. Z.

Dai, W.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Deng, W. Y.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

Ding, X. L.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

Dittrich, T.

T. Dittrich, S. Fiechter, and A. Thomas, “Surface photovoltage spectroscopy of carbon nitride powder,” Appl. Phys. Lett. 99(8), 084105 (2011).
[Crossref]

Domen, K.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Dong, F.

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

Du, Y.

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Fan, Z.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Fang, J.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Fiechter, S.

T. Dittrich, S. Fiechter, and A. Thomas, “Surface photovoltage spectroscopy of carbon nitride powder,” Appl. Phys. Lett. 99(8), 084105 (2011).
[Crossref]

Fu, M.

H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, “Optical identification of MoS₂/graphene heterostructure on SiO2/Si substrate,” Opt. Express 22(13), 15969–15974 (2014).
[Crossref] [PubMed]

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

Fu, X.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Fu, Y.

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Fu, Y. S.

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

Galán, L.

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

García de Abajo, F. J.

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

Ge, C.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Ge, L.

L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
[Crossref]

Gong, X.

Gordan, O.

Guan, Z. Y.

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

Guo, L. L.

L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
[Crossref]

Han, C. C.

L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
[Crossref]

He, D.

He, X. D.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Ho, W. K.

Z. H. Ai, W. K. Ho, and S. C. Lee, “Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites,” J. Phys. Chem. C 115(51), 25330–25337 (2011).
[Crossref]

Hou, Y.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Hu, M.

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Hu, S.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Huang, H.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Huang, H. J.

Huang, J.

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

Huang, X.

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Jaramillo, T. F.

P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy,” RSC Advances 2(21), 7933–7947 (2012).
[Crossref]

Jiang, F.

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

Jiang, H.

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Kang, L. T.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Kang, X.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Kang, Z. H.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Kazuhide, K.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Kloc, C.

Koji, T.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Kuo, L. C.

Lee, S.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Lee, S. C.

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

Z. H. Ai, W. K. Ho, and S. C. Lee, “Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites,” J. Phys. Chem. C 115(51), 25330–25337 (2011).
[Crossref]

Lei, D.

Leong, W. S.

Li, F.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Li, H.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Li, H. H.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Li, H. T.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Li, Q.

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

Li, Q. X.

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

Li, Y.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

Li, Y. X.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

Lian, S. Y.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Liao, Y. S.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Liebig, A.

Ling, Z. P.

Liu, F.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Liu, H.

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Liu, J.

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

Liu, J. J.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Liu, P.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Liu, Q.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Liu, R. S.

Liu, X. F.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Liu, Y.

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Loo, S. C. J.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Ma, L.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Maeda, K.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

Möhwald, H.

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

Montero, I.

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

Ng, D. H. L.

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

Nib, Z. L.

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

Nobuaki, N.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Pan, J. N.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Qiu, P. X.

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

Qusti, A. H.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Ripalda, J. M.

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

Sakiko, T.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Sang, Y.

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Schmidt, R.

Shan, G. Q.

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Shchukin, D.

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

Shi, L.

Sum, T. C.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Sun, X.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Sun, Y.

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

Sun, Y. J.

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

Taizo, S.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Takanabe, K.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Thomas, A.

T. Dittrich, S. Fiechter, and A. Thomas, “Surface photovoltage spectroscopy of carbon nitride powder,” Appl. Phys. Lett. 99(8), 084105 (2011).
[Crossref]

Tian, J.

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

Tong, Y.

Tonndorf, P.

Tsai, D. P.

Tseng, M. L.

Tsutomu, H.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Van Hove, M. A.

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

Vesborg, P. C. K.

P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy,” RSC Advances 2(21), 7933–7947 (2012).
[Crossref]

Wang, C. Y.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Wang, D. H.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Wang, F.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Wang, G.

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

Wang, J.

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Wang, J. J.

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

Wang, Q.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Wang, S. J.

Wang, W.

Wang, X.

X. Wang, W. Yan, L. Zhang, L. Shi, H. Chen, Y. Zhang, M. Wu, and P. Zhang, “Tunable photocatalytic activity of photochromic Fe-Mn-codoped LiNbO3 nanocrystals,” Opt. Mater. Express 5(10), 2240–2245 (2015).
[Crossref]

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

Wang, Y.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, “Optical identification of MoS₂/graphene heterostructure on SiO2/Si substrate,” Opt. Express 22(13), 15969–15974 (2014).
[Crossref] [PubMed]

Wang, Y. B.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Wang, Z. L.

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Wu, G.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Wu, H.

Wu, L. W.

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

Wu, M.

Wu, Z.

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

Xiao, S.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Xiao, X. L.

L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
[Crossref]

Xie, Y.

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Xiong, T.

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

Xu, C. M.

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

Xu, H.

Xue, C.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Yan, W.

Yang, J. L.

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

Yang, R.

Z. P. Ling, R. Yang, J. W. Chai, S. J. Wang, W. S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D. Z. Chi, and K. W. Ang, “Large-scale two-dimensional MoS₂ photodetectors by magnetron sputtering,” Opt. Express 23(10), 13580–13586 (2015).
[Crossref] [PubMed]

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Yang, Y.

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

Yao, J. N.

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

Yin, Z.

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Yoshiyuki, T.

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

Yuan, Y. P.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Zahn, D. R.

Zeng, Z.

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Zhang, D.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Zhang, H.

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Zhang, L.

Zhang, N.

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

Zhang, P.

Zhang, W.

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

Zhang, X.

Zhang, Y.

X. Wang, W. Yan, L. Zhang, L. Shi, H. Chen, Y. Zhang, M. Wu, and P. Zhang, “Tunable photocatalytic activity of photochromic Fe-Mn-codoped LiNbO3 nanocrystals,” Opt. Mater. Express 5(10), 2240–2245 (2015).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Zhang, Z. Y.

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

Zhao, J.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

Zhou, N.

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

Zhou, Q.

Zhou, W.

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Zhou, Y.

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

Zhu, L. Y.

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Zhu, W.

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Zhu, Y. Q.

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants,” ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013).
[Crossref] [PubMed]

APL Mater. (1)

X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng, and C. Y. Wang, “Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyst under visible-light irradiation,” APL Mater. 3(10), 104410 (2015).
[Crossref]

Appl. Catal. B (2)

S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Appl. Catal. B 147, 940–946 (2014).
[Crossref]

C. Chang, Y. Fu, M. Hu, C. Y. Wang, G. Q. Shan, and L. Y. Zhu, “Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation,” Appl. Catal. B 553, 142–143 (2013).

Appl. Phys. Lett. (2)

J. M. Ripalda, F. J. García de Abajo, I. Montero, L. Galán, and M. A. Van Hove, “Photoelectron diffraction at the surface of amorphous carbon nitride,” Appl. Phys. Lett. 77(21), 3394 (2000).
[Crossref]

T. Dittrich, S. Fiechter, and A. Thomas, “Surface photovoltage spectroscopy of carbon nitride powder,” Appl. Phys. Lett. 99(8), 084105 (2011).
[Crossref]

Appl. Surf. Sci. (1)

Y. J. Sun, T. Xiong, Z. L. Nib, J. Liu, F. Dong, and W. Zhang, “Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration,” Appl. Surf. Sci. 358, 356–362 (2015).
[Crossref]

Carbon (1)

H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S. Lee, and Z. H. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon 49(2), 605–609 (2011).
[Crossref]

Chem. Commun. (Camb.) (1)

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures,” Chem. Commun. (Camb.) 51(39), 8249–8252 (2015).
[Crossref] [PubMed]

Dalton Trans. (1)

S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, and G. Wu, “Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions,” Dalton Trans. 44(48), 20889–20897 (2015).
[Crossref] [PubMed]

Int. J. Hydrogen Energy (1)

L. Ge, C. C. Han, X. L. Xiao, and L. L. Guo, “Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity,” Int. J. Hydrogen Energy 38(17), 6960–6969 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, “Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light,” J. Am. Chem. Soc. 131(5), 1680–1681 (2009).
[Crossref] [PubMed]

J. Mater. Chem. (1)

F. Dong, L. W. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, “Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts,” J. Mater. Chem. 21(39), 15171–15174 (2011).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (4)

J. J. Wang, Z. Y. Guan, J. Huang, Q. X. Li, and J. L. Yang, “Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite,” J. Mater. Chem. A Mater. Energy Sustain. 2(21), 7960–7966 (2014).
[Crossref]

D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang, and J. N. Yao, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” J. Mater. Chem. A Mater. Energy Sustain. 4, 290–296 (2016).
[Crossref]

P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang, and Y. S. Fu, “Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst,” J. Mater. Chem. A Mater. Energy Sustain. 3(48), 24237–24244 (2015).
[Crossref]

S. Taizo, T. Sakiko, K. Kazuhide, H. Tsutomu, T. Yoshiyuki, N. Nobuaki, and T. Koji, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A Mater. Energy Sustain. 1(21), 6489–6496 (2013).
[Crossref]

J. Phys. Chem. C (2)

A. Brotchie, D. Borisova, V. Belova, H. Möhwald, and D. Shchukin, “Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonic effects,” J. Phys. Chem. C 116(14), 7952–7956 (2012).
[Crossref]

Z. H. Ai, W. K. Ho, and S. C. Lee, “Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites,” J. Phys. Chem. C 115(51), 25330–25337 (2011).
[Crossref]

Langmuir (1)

Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, “High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures,” Langmuir 30(29), 8965–8972 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, “Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect,” Nano Lett. 15(4), 2372–2379 (2015).
[Crossref] [PubMed]

Nanoscale (1)

S. Xiao, W. Zhu, P. Liu, F. Liu, W. Dai, D. Zhang, W. Chen, and H. Li, “CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation,” Nanoscale 8(5), 2899–2907 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Mater. Express (1)

RSC Advances (1)

P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy,” RSC Advances 2(21), 7933–7947 (2012).
[Crossref]

Small (1)

W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities,” Small 9(1), 140–147 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of the synthesized MoS2 nanoflakes, pure g-C3N4 and 1.5wt% MoS2-g-C3N4 nanocomposites.
Fig. 2
Fig. 2 SEM images of different samples. (a) MoS2, (b) pure g-C3N4, and (c) 1.5wt% MoS2-g-C3N4 nanocomposites.
Fig. 3
Fig. 3 (a) TEM images and (b) HRTEM, FFT and IFFT images of MoS2, (c) TEM images of 1.5wt% MoS2-g-C3N4 nanocomposites, (d) HRTEM images of 1.5wt% MoS2-g-C3N4 nanocomposites and (e) EDS mapping of 1.5wt% MoS2-g-C3N4 nanocomposites.
Fig. 4
Fig. 4 (a) UV−vis absorption of the as-prepared samples and (b) Photocatalytic activity of the samples for the removal NO gas under visible light irradiation.
Fig. 5
Fig. 5 PL spectra of the as-prepared samples.
Fig. 6
Fig. 6 Mechanism illustration for the photocatalytic removal of NO using MoS2-g-C3N4 nanocomposites.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η ( % ) = ( C 0 C ) / C 0 * 1 00 % .

Metrics