Abstract

Multiphoton absorption (MPA) effects have become useful for real applications as well as conceptual predictions. However, most of organic molecules exhibit small Stokes shift and reduced MPA in the highly polar solvents, which may seriously hinder their related applications. In this work, one styrylpyridinium salt has been synthesized, which exhibits outstanding properties such as bright red fluorescence at the wavelength of 626 nm in a highly polar solvent (DMSO). Importantly, it is noted that the material also exhibits strong two- and three-photon absorption action cross-section (δ2PA = 597 GM and δ3PA = 18 × 10−80 cm6∙s2∙photon−2, respectively), which can be excited in near-infrared (NIR) window I (650–900 nm) and NIR window II (1000–1450 nm). Meanwhile, two-photon in vitro bioimaging and MPA induced optical limiting behavior have been successfully demonstrated based on the chromophore.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging

Yalun Wang, Rongrong Hu, Wang Xi, Fuhong Cai, Shaowei Wang, Zhenfeng Zhu, Rongpan Bai, and Jun Qian
Biomed. Opt. Express 6(10) 3783-3794 (2015)

Two-photon absorption and broadband optical limiting with bis-donor stilbenes

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry
Opt. Lett. 22(24) 1843-1845 (1997)

Dendrimer molecules with record large two-photon absorption cross section

Mikhail Drobizhev, Aliaksandr Karotki, Aleksander Rebane, and Charles W. Spangler
Opt. Lett. 26(14) 1081-1083 (2001)

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
    [Crossref] [PubMed]
  2. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
    [Crossref] [PubMed]
  3. C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
    [Crossref] [PubMed]
  4. Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
    [Crossref]
  5. H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
    [Crossref] [PubMed]
  6. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
    [Crossref] [PubMed]
  7. J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
    [Crossref] [PubMed]
  8. T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
    [Crossref] [PubMed]
  9. H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
    [Crossref]
  10. S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
    [Crossref]
  11. B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
    [Crossref]
  12. D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
    [Crossref] [PubMed]
  13. Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
    [Crossref]
  14. Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
    [Crossref]
  15. J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
    [Crossref] [PubMed]
  16. A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
    [Crossref] [PubMed]
  17. L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
    [Crossref] [PubMed]
  18. T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
    [Crossref]
  19. H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
    [Crossref] [PubMed]
  20. L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
    [Crossref]
  21. E. Şen, K. Meral, and S. Atılgan, “From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift,” Chemistry 22(2), 736–745 (2016).
    [Crossref] [PubMed]
  22. B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
    [Crossref] [PubMed]
  23. H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
    [Crossref]
  24. A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
    [Crossref]
  25. S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
    [Crossref]
  26. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
    [Crossref] [PubMed]
  27. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
    [Crossref] [PubMed]
  28. T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
    [Crossref]
  29. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  30. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (New York, 2003).
  31. L. Ma, Y. Zhang, and P. Yuan, “Nonlinear optical properties of phenoxy-phthalocyanines at 800 nm with femtosecond pulse excitation,” Opt. Express 18(17), 17666–17671 (2010).
    [Crossref] [PubMed]
  32. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20(5), 435–437 (1995).
    [Crossref] [PubMed]
  33. G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20(14), 1524–1526 (1995).
    [Crossref] [PubMed]
  34. R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
    [Crossref] [PubMed]
  35. X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
    [Crossref]
  36. L. Guo and M. S. Wong, “Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes,” Adv. Mater. 26(31), 5400–5428 (2014).
    [Crossref] [PubMed]
  37. D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
    [Crossref] [PubMed]
  38. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
    [Crossref] [PubMed]
  39. H. Myung Kim and B. Rae Cho, “Two-photon materials with large two-photon cross sections. Structure-property relationship,” Chem. Commun. (Camb.) 49(2), 153–164 (2009).
    [Crossref] [PubMed]
  40. C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
    [Crossref]
  41. M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
    [Crossref]
  42. A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
    [Crossref] [PubMed]
  43. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
    [Crossref] [PubMed]
  44. Y. Qian and M. Luo, “Synthesis and efficient three-photon excited green fluorescence of pyridine-triphenylamine conjugated dyes,” Dyes Pigments 101, 240–246 (2014).
    [Crossref]
  45. T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
    [Crossref] [PubMed]
  46. P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
    [Crossref] [PubMed]
  47. A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
    [Crossref]

2016 (3)

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

E. Şen, K. Meral, and S. Atılgan, “From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift,” Chemistry 22(2), 736–745 (2016).
[Crossref] [PubMed]

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

2015 (14)

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
[Crossref]

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

2014 (3)

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

L. Guo and M. S. Wong, “Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes,” Adv. Mater. 26(31), 5400–5428 (2014).
[Crossref] [PubMed]

Y. Qian and M. Luo, “Synthesis and efficient three-photon excited green fluorescence of pyridine-triphenylamine conjugated dyes,” Dyes Pigments 101, 240–246 (2014).
[Crossref]

2013 (8)

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

2012 (2)

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

2011 (2)

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

2010 (1)

2009 (2)

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

H. Myung Kim and B. Rae Cho, “Two-photon materials with large two-photon cross sections. Structure-property relationship,” Chem. Commun. (Camb.) 49(2), 153–164 (2009).
[Crossref] [PubMed]

2008 (2)

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

2007 (1)

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

2005 (1)

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

2002 (1)

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[Crossref] [PubMed]

1998 (1)

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

1997 (1)

1996 (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

1995 (2)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Adachi, C.

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

Albota, M.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Anderson, H. L.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Ando, A.

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

Aroca, R. F.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Atilgan, S.

E. Şen, K. Meral, and S. Atılgan, “From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift,” Chemistry 22(2), 736–745 (2016).
[Crossref] [PubMed]

Balaz, M.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Banasiewicz, M.

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Barlow, A.

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Bartkowiak, W.

M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
[Crossref]

Bawendi, M. G.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Beljonne, D.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Belton, C. R.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Bhatt, J. C.

Bhawalkar, J. D.

Blanchard-Desce, M.

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Bradley, D. D. C.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Brédas, J. L.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Brookins, R. N.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Bruns, O. T.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Brzostowski, J.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Castet, F.

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Chaturvedi, A.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Cheah, K. W.

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

Chen, B.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Chen, G.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

Chen, L.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Chen, R.

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

Chen, S.

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

Chen, W.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Chen, X.

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

Chittigori, J.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Cifuentes, M. P.

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Clermont, G.

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Collins, H. A.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Constantino, C. J. L.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Corrêa, D. S.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Cui, Y.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Dahlstedt, E.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Deng, M.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

Denning, R. G.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Di, Z.

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Dillard, A. G.

Ding, D.

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Dong, B.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

Drobizhev, M.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Duda, D. G.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Ehrlich, J. E.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[Crossref] [PubMed]

Ellinger, S.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Elmasly, S. E. T.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Ensley, T. R.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Fan, H. H.

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

Farley, R. T.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Feng, G.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Forgie, J. C.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Friese, D. H.

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

Fu, H.

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Fu, J. Y.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Fukumura, D.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

Goh, C.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Graham, K. R.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Grimsdale, A. C.

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Gryko, D. T.

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

Gu, Z.

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Guerzo, A. D.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

Guo, L.

L. Guo and M. S. Wong, “Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes,” Adv. Mater. 26(31), 5400–5428 (2014).
[Crossref] [PubMed]

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

Hagan, D. J.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Han, X.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Hao, X.

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

He, B.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

He, G. S.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[Crossref] [PubMed]

G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20(14), 1524–1526 (1995).
[Crossref] [PubMed]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20(5), 435–437 (1995).
[Crossref] [PubMed]

He, T.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

He, X.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Heikal, A. A.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Hess, S. E.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Hu, H.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Hu, R.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Hu, Y.

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Hu, Z.-Y.

Hua, J.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Huang, C.

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Humphrey, M. G.

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Ihara, H.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

Jadhav, T.

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Jain, R. K.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Ji, W.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Jiang, T.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Jintoku, H.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

Joseph, J.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Kamada, K.

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

Kanibolotsky, A. L.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Kao, M.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

Karnas, E.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Kempa, T. J.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Khurana, M.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Kim, S.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

Kogej, T.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Krzeszewski, M.

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

Kuimova, M. K.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Kumar, A.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Kumar, J.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Lee, C. S.

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

Lee, I.-Y. S.

Lemon, C. M.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Levin, M. D.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Li, B.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Li, C.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

Li, H.

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Li, K.

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Li, K. F.

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Liao, Q.

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Lim, Z. B.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Lin, T.-C.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[Crossref] [PubMed]

Lin, X.

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

Liu, B.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Liu, J.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Liu, W.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Liu, Y.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

Lou, X.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Luo, M.

Y. Qian and M. Luo, “Synthesis and efficient three-photon excited green fluorescence of pyridine-triphenylamine conjugated dyes,” Dyes Pigments 101, 240–246 (2014).
[Crossref]

Ma, C.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

Ma, E.

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

Ma, L.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

L. Ma, Y. Zhang, and P. Yuan, “Nonlinear optical properties of phenoxy-phthalocyanines at 800 nm with femtosecond pulse excitation,” Opt. Express 18(17), 17666–17671 (2010).
[Crossref] [PubMed]

Maji, S. K.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Mandal, A. K.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Maragani, R.

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Marder, S. R.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[Crossref] [PubMed]

Mariampillai, A.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Markowicz, P. P.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[Crossref] [PubMed]

Masunaga, T.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

McCord-Maughon, D.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

McGurk, J.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Mei, J.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Mendonça, C. R.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Meral, K.

E. Şen, K. Meral, and S. Atılgan, “From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift,” Chemistry 22(2), 736–745 (2016).
[Crossref] [PubMed]

Michalska, J.

M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
[Crossref]

Mikhaylov, A.

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

Misoguti, L.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Misra, R.

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Mobin, S. M.

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Moriyama, E. H.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Myung Kim, H.

H. Myung Kim and B. Rae Cho, “Two-photon materials with large two-photon cross sections. Structure-property relationship,” Chem. Commun. (Camb.) 49(2), 153–164 (2009).
[Crossref] [PubMed]

Nazir, R.

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Ng, L.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Nie, H.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Niu, H.

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Nocera, D. G.

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

Oliveira, S. L.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Ong, S. L.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Orlowski, R.

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Padilha, L. A.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Pandey, R. K.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

Pawlicki, M.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

Peng, X.

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Peng, Z.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Perry, J. W.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[Crossref] [PubMed]

Phillips, D.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Pierce, S.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Poronik, Y. M.

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

Prasad, P. N.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[Crossref] [PubMed]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20(5), 435–437 (1995).
[Crossref] [PubMed]

G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20(14), 1524–1526 (1995).
[Crossref] [PubMed]

Pudavar, H. E.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

Purc, A.

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

Qian, G.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Qian, Y.

Y. Qian and M. Luo, “Synthesis and efficient three-photon excited green fluorescence of pyridine-triphenylamine conjugated dyes,” Dyes Pigments 101, 240–246 (2014).
[Crossref]

Qin, A.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Qin, W.

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Qu, J.

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Quah, H. S.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Rae Cho, B.

H. Myung Kim and B. Rae Cho, “Two-photon materials with large two-photon cross sections. Structure-property relationship,” Chem. Commun. (Camb.) 49(2), 153–164 (2009).
[Crossref] [PubMed]

Rajwar, D.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Rao, D. N.

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Rebane, A.

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Reinhardt, B. A.

Reynolds, J. R.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Röckel, H.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997).
[Crossref] [PubMed]

Rumi, M.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Ruud, K.

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sakagami, Y.

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

Samoc, M.

M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
[Crossref]

Samuelson, L. A.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Sandman, D.

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

Schanze, K. S.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Schreyer, M. K.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Sen, E.

E. Şen, K. Meral, and S. Atılgan, “From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift,” Chemistry 22(2), 736–745 (2016).
[Crossref] [PubMed]

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shi, P.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Shi, X.

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Simpson, P. V.

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Skabara, P. J.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Sobczyk, K.

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

Sreejith, S.

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Sreeramulu, V.

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Stavrinou, P. N.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Steckler, T. T.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Subramaniam, G.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Sun, H.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Takafuji, M.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

Tan, L. S.

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Tan, Y.

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Tang, B. Z.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Tang, C.

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

Tang, J.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Taranekar, P.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Tian, H.

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Tian, Y.

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Tieke, B.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Van Stryland, E. W.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vilela, F.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Vittal, J. J.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Wang, G.

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Wang, K.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Wang, Q.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

Wang, X. J.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Wang, Y.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

Wang, Z.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Watson, L. A.

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Webb, W. W.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Webster, S.

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wielgus, M.

M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
[Crossref]

Williams, R. M.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Wilson, B. C.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Wong, M. S.

L. Guo and M. S. Wong, “Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes,” Adv. Mater. 26(31), 5400–5428 (2014).
[Crossref] [PubMed]

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

Wong, M. W.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Wu, X. L.

Wu, X.-L.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Wu, Y.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Xu, C.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Xu, G. C.

Xu, H.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Xu, J.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Xu, Z.

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Yang, H.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

Yang, L.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Yang, V. X. D.

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Yang, X.

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Yi, D.

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Ying, Y.

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Yoshigashima, Y.

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

Yu, J.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Yuan, P.

Zhan, R.

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Zhang, C.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

Zhang, J.

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

Zhang, K.

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

Zhang, Q.

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Zhang, X.

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

Zhang, Y.

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

L. Ma, Y. Zhang, and P. Yuan, “Nonlinear optical properties of phenoxy-phthalocyanines at 800 nm with femtosecond pulse excitation,” Opt. Express 18(17), 17666–17671 (2010).
[Crossref] [PubMed]

Zhao, X.

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

Zhao, Y.

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

Zhao, Z.

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Zheng, Q.

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Zheng, R.

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

Zhou, X.

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

Zhu, H.

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

Zhu, Z.

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

Zilio, S. C.

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. Zhang, R. Chen, Z. Zhu, C. Adachi, X. Zhang, and C. S. Lee, “Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging,” ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015).
[Crossref] [PubMed]

ACS Nano (1)

A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. J. Wang, S. L. Ong, J. Joseph, H. Sun, and Y. Zhao, “Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging,” ACS Nano 9(5), 4796–4805 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. Gao, G. Feng, T. Jiang, C. Goh, L. Ng, B. Liu, B. Li, L. Yang, J. Hua, and H. Tian, “Biocompatible Nanoparticles Based on Diketo-Pyrrolo-Pyrrole (DPP) with Aggregation-Induced Red/NIR Emission for In Vivo Two-Photon Fluorescence Imaging,” Adv. Funct. Mater. 25(19), 2857–2866 (2015).
[Crossref]

Adv. Healthc. Mater. (1)

D. Ding, K. Li, W. Qin, R. Zhan, Y. Hu, J. Liu, B. Z. Tang, and B. Liu, “Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles With Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging,” Adv. Healthc. Mater. 2(3), 500–507 (2013).
[Crossref] [PubMed]

Adv. Mater. (3)

A. L. Kanibolotsky, F. Vilela, J. C. Forgie, S. E. T. Elmasly, P. J. Skabara, K. Zhang, B. Tieke, J. McGurk, C. R. Belton, P. N. Stavrinou, and D. D. C. Bradley, “Well-defined and monodisperse linear and star-shaped quaterfluorene-DPP molecules: the significance of conjugation and dimensionality,” Adv. Mater. 23(18), 2093–2097 (2011).
[Crossref] [PubMed]

S. L. Oliveira, D. S. Corrêa, L. Misoguti, C. J. L. Constantino, R. F. Aroca, S. C. Zilio, and C. R. Mendonça, “Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing,” Adv. Mater. 17(15), 1890–1893 (2005).
[Crossref]

L. Guo and M. S. Wong, “Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes,” Adv. Mater. 26(31), 5400–5428 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D supramolecular Zn(II)-coordinated self-assembled organic network,” Adv. Opt. Mater. 2(1), 40–47 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-Photon Absorption and the Design of Two-Photon Dyes,” Angew. Chem. Int. Ed. Engl. 48(18), 3244–3266 (2009).
[Crossref] [PubMed]

P. V. Simpson, L. A. Watson, A. Barlow, G. Wang, M. P. Cifuentes, and M. G. Humphrey, “Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation,” Angew. Chem. Int. Ed. Engl. 55(7), 2387–2391 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, “Two-photon fluorescence properties of curcumin as a biocompatible for confocal imaging,” Appl. Phys. Lett. 100(20), 203701 (2012).
[Crossref]

T. He, S. Sreejith, Y. Gao, A. C. Grimsdale, Y. Zhao, X. Lin, and H. Sun, “Superior optical nonlinearity of an exceptional fluorescent stilbene dye,” Appl. Phys. Lett. 106(11), 111904 (2015).
[Crossref]

Chem. Asian J. (1)

T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, and H. Sun, “Large Two-Photon Absorption of Terpyridine-Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging,” Chem. Asian J. 8(3), 564–571 (2013).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

L. Li, J. Liu, X. Yang, Z. Peng, W. Liu, J. Xu, J. Tang, X. He, and K. Wang, “Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging,” Chem. Commun. (Camb.) 51(76), 14357–14360 (2015).
[Crossref] [PubMed]

H. Myung Kim and B. Rae Cho, “Two-photon materials with large two-photon cross sections. Structure-property relationship,” Chem. Commun. (Camb.) 49(2), 153–164 (2009).
[Crossref] [PubMed]

Chem. Mater. (2)

S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze, and J. R. Reynolds, “Donor–Acceptor–Donor-based Conjugated Oligomers for Nonlinear Optics and Near-IR Emission,” Chem. Mater. 23(17), 3805–3817 (2011).
[Crossref]

B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng, and Q. Wang, “Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in Vivo Imaging,” Chem. Mater. 25(12), 2503–2509 (2013).
[Crossref]

Chem. Rev. (1)

G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications,” Chem. Rev. 108(4), 1245–1330 (2008).
[Crossref] [PubMed]

Chemistry (2)

D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M. Poronik, A. Rebane, K. Ruud, and D. T. Gryko, “Pyrrolo[3,2-b]pyrroles-From Unprecedented Solvatofluorochromism to Two-Photon Absorption,” Chemistry 21(50), 18364–18374 (2015).
[Crossref] [PubMed]

E. Şen, K. Meral, and S. Atılgan, “From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift,” Chemistry 22(2), 736–745 (2016).
[Crossref] [PubMed]

Dalton Trans. (1)

T. Jadhav, R. Maragani, R. Misra, V. Sreeramulu, D. N. Rao, and S. M. Mobin, “Design and synthesis of donor-acceptor pyrazabole derivatives for multiphoton absorption,” Dalton Trans. 42(13), 4340–4342 (2013).
[Crossref] [PubMed]

Dyes Pigments (5)

Y. Qian and M. Luo, “Synthesis and efficient three-photon excited green fluorescence of pyridine-triphenylamine conjugated dyes,” Dyes Pigments 101, 240–246 (2014).
[Crossref]

L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu, and C. Zhang, “Asymmetric anthracene-fused BODIPY dye with large Stokes shift: Synthesis, photophysical properties and bioimaging,” Dyes Pigments 126, 232–238 (2016).
[Crossref]

X. Shi, Z. Xu, Q. Liao, Y. Wu, Z. Gu, R. Zheng, and H. Fu, “Aggregation enhanced two-photon fluorescence of organic nanoparticles,” Dyes Pigments 115, 211–217 (2015).
[Crossref]

M. Wielgus, J. Michalska, M. Samoc, and W. Bartkowiak, “Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline,” Dyes Pigments 113, 426–434 (2015).
[Crossref]

Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, “Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission,” Dyes Pigments 97(1), 58–64 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (3)

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007).
[Crossref] [PubMed]

C. M. Lemon, E. Karnas, X. Han, O. T. Bruns, T. J. Kempa, D. Fukumura, M. G. Bawendi, R. K. Jain, D. G. Duda, and D. G. Nocera, “Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors,” J. Am. Chem. Soc. 137(31), 9832–9842 (2015).
[Crossref] [PubMed]

H. H. Fan, L. Guo, K. F. Li, M. S. Wong, and K. W. Cheah, “Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s,” J. Am. Chem. Soc. 134(17), 7297–7300 (2012).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

H. Jintoku, M. Kao, A. D. Guerzo, Y. Yoshigashima, T. Masunaga, M. Takafuji, and H. Ihara, “Tunable Stokes shift and circularly polarized luminescence by supramolecular gel,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(23), 5970–5975 (2015).
[Crossref]

A. Purc, K. Sobczyk, Y. Sakagami, A. Ando, K. Kamada, and D. T. Gryko, “Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(4), 742–749 (2015).
[Crossref]

Nat. Commun. (2)

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, “Multiphoton harvesting metal-organic frameworks,” Nat. Commun. 6, 7954 (2015).
[Crossref] [PubMed]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 2719 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008).
[Crossref]

Q. Zheng, H. Zhu, S. Chen, C. Tang, E. Ma, and X. Chen, “Frequency-upconverted stimulated emission by simultaneous five-photon absorption,” Nat. Photonics 7(3), 234–239 (2013).
[Crossref]

Nature (1)

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Org. Lett. (1)

B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin, Z. Zhao, and B. Z. Tang, “High fluorescence efficiencies and large stokes shifts of folded fluorophores consisting of a pair of alkenyl-tethered, π-stacked oligo-p-phenylenes,” Org. Lett. 17(24), 6174–6177 (2015).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

R. Orłowski, M. Banasiewicz, G. Clermont, F. Castet, R. Nazir, M. Blanchard-Desce, and D. T. Gryko, “Strong solvent dependence of linear and non-linear optical properties of donor-acceptor type pyrrolo[3,2-b]pyrroles,” Phys. Chem. Chem. Phys. 17(37), 23724–23731 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Science (1)

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998).
[Crossref] [PubMed]

Sensor Actuate-Chem. (1)

C. Huang, X. Peng, D. Yi, J. Qu, and H. Niu, “Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature,” Sensor Actuate-Chem. 182, 521–529 (2013).
[Crossref]

Other (1)

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (New York, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The synthesis protocol of styrylpyridinium salt.
Fig. 2
Fig. 2 Linear absorption and fluorescence emission spectra of the styrylpyridinium salt in different organic solvents. The “biological transparency window” is indicated in shadow color.
Fig. 3
Fig. 3 Fluorescence decay profiles of the styrylpyridinium salt in different organic solvents.
Fig. 4
Fig. 4 Optimized frontier HOMO/LUMO of stilbene chromophore calculated with DFT at the B3LYP/6-31G(d) level by applying the Gaussian 09 program. The color dots represent electron cloud.
Fig. 5
Fig. 5 (a) Quadratic dependence of 2PA induced emission intensity on the excitation intensity in different organic solvents. (b) 2PA spectra of styrylpyridinium salt in different solvents. The arrow indicates the wavelength of 800 nm, which is the central wavelength of a Ti:sapphire oscillator. Error bars indicate experimental uncertainty of ± 10%.
Fig. 6
Fig. 6 (a) Cubic dependence of 3PA induced emission intensity on the excitation intensity in different organic solvents. (b) 3PA spectra of styrylpyridinium salt in different solvents. The arrow indicates the wavelength of 1050 nm, which is compatible with the 1050 nm fiber laser source. Error bars indicate experimental uncertainty of ± 15%.
Fig. 7
Fig. 7 (a) Bright-field imaging of HeLa cells. (b) Two-photon imaging of HeLa cells incubated with 100 μM chromophore (emission wavelength collected from 650 to 850 nm). (c) The overlay of (a) and (b). Scale bars represent 50 μm.
Fig. 8
Fig. 8 Output optical intensity versus the pump intensity by two-photon excitation at 800 nm and three-photon excitation at 1150 nm, L = 1 cm, d = 0.01 M, giving a 2PA coefficient β = 0.48 cm/GW and a 3PA coefficient of γ = 1.18 × 10−4 cm3/GW2, respectively. The solid lines are fitting lines using Eqs. (5) and (6).

Tables (1)

Tables Icon

Table 1 Experimental Linear and MPA Photophysical Properties of the Styrylpyridinium Salt in Different Solvents

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T OA (2PA)= 1 1+β L eff 2PA ( I 00 /(1+ (z/ z 0 ) 2 ))
δ 2PA = βhν N A d× 10 3
T OA (3PA)= 1 [1+2γ L eff 3PA ( I 00 /(1+ (z/ z 0 ) 2 )) 2 ] 1/2
δ 3PA = γ (hν) 2 N A d× 10 3
T( I 00 )=I(L)/ I 00 =[Ln(1+L I 0 0 β)]/L I 00 β
T( I 00 )=I(L)/ I 00 =1/[1+2L I 00 2 γ) ] 1/2

Metrics