Abstract

Previous studies on edge illumination (EI) X-ray phase-contrast imaging (XPCi) have investigated the nature and amplitude of the signal provided by this technique. However, the response of the imaging system to different object spatial frequencies was never explicitly considered and studied. This is required in order to predict the performance of a given EI setup for different classes of objects. To this scope, in the present work we derive analytical expressions for the contrast transfer function of an EI imaging system, using the approximation of near-field regime, and study its dependence upon the main experimental parameters. We then exploit these results to compare the frequency response of an EI system with respect of that of a free-space propagation XPCi one. The results achieved in this work can be useful for predicting the signals obtainable for different types of objects and also as a basis for new retrieval methods.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
On the origin of contrast in edge illumination X-ray phase-contrast imaging

Paul C. Diemoz and Alessandro Olivo
Opt. Express 22(23) 28199-28214 (2014)

Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging

Matthieu N. Boone, Wouter Devulder, Manuel Dierick, Loes Brabant, Elin Pauwels, and Luc Van Hoorebeke
J. Opt. Soc. Am. A 29(12) 2667-2672 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
    [Crossref] [PubMed]
  2. A. Olivo and R. D. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
    [Crossref]
  3. P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13922–13927 (2012).
    [Crossref] [PubMed]
  4. A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
    [Crossref] [PubMed]
  5. A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett. 37(5), 915–917 (2012).
    [Crossref] [PubMed]
  6. P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
    [Crossref] [PubMed]
  7. P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
    [Crossref]
  8. P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
    [Crossref] [PubMed]
  9. T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
    [Crossref] [PubMed]
  10. P. C. Diemoz, F. A. Vittoria, and A. Olivo, “Spatial resolution of edge illumination X-ray phase-contrast imaging,” Opt. Express 22(13), 15514–15529 (2014).
    [Crossref] [PubMed]
  11. P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18(19), 19681–19692 (2010).
    [Crossref] [PubMed]
  12. P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
    [Crossref] [PubMed]
  13. M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
    [Crossref]
  14. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
    [Crossref]
  15. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
    [Crossref]
  16. Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
    [Crossref]
  17. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
    [Crossref] [PubMed]
  18. F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
    [Crossref] [PubMed]
  19. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
    [Crossref]
  20. R. J. Dejus and M. Sanchez del Rio, “XOP: A Graphical User Interface for Spectral Calculations and X-Ray Optics Utilities,” Rev. Sci. Instrum. 67(9), 3356 (1996).
    [Crossref]
  21. K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
    [Crossref] [PubMed]
  22. C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
    [Crossref]
  23. C. Y. Chou and M. A. Anastasio, “Influence of imaging geometry on noise texture in quantitative in-line X-ray phase-contrast imaging,” Opt. Express 17(17), 14466–14480 (2009).
    [Crossref] [PubMed]
  24. P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express 20(3), 2789–2805 (2012).
    [Crossref] [PubMed]
  25. Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D Appl. Phys. 47(10), 105402 (2014).
    [Crossref]
  26. P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
    [Crossref]

2015 (1)

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

2014 (5)

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D Appl. Phys. 47(10), 105402 (2014).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
[Crossref] [PubMed]

P. C. Diemoz, F. A. Vittoria, and A. Olivo, “Spatial resolution of edge illumination X-ray phase-contrast imaging,” Opt. Express 22(13), 15514–15529 (2014).
[Crossref] [PubMed]

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

2013 (7)

P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
[Crossref] [PubMed]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
[Crossref]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

A. Olivo and R. D. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

2005 (1)

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

2001 (1)

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

1996 (2)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

R. J. Dejus and M. Sanchez del Rio, “XOP: A Graphical User Interface for Spectral Calculations and X-Ray Optics Utilities,” Rev. Sci. Instrum. 67(9), 3356 (1996).
[Crossref]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

1983 (1)

Anastasio, M. A.

Arfelli, F.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Bevins, N.

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

Bravin, A.

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express 20(3), 2789–2805 (2012).
[Crossref] [PubMed]

A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett. 37(5), 915–917 (2012).
[Crossref] [PubMed]

Cantatore, G.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Castelli, E.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Chen, G. H.

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

Chou, C. Y.

Coan, P.

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express 20(3), 2789–2805 (2012).
[Crossref] [PubMed]

Dejus, R. J.

R. J. Dejus and M. Sanchez del Rio, “XOP: A Graphical User Interface for Spectral Calculations and X-Ray Optics Utilities,” Rev. Sci. Instrum. 67(9), 3356 (1996).
[Crossref]

Diemoz, P. C.

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. C. Diemoz, F. A. Vittoria, and A. Olivo, “Spatial resolution of edge illumination X-ray phase-contrast imaging,” Opt. Express 22(13), 15514–15529 (2014).
[Crossref] [PubMed]

P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
[Crossref] [PubMed]

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
[Crossref] [PubMed]

P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express 20(3), 2789–2805 (2012).
[Crossref] [PubMed]

A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett. 37(5), 915–917 (2012).
[Crossref] [PubMed]

Dreossi, D.

Endrizzi, M.

P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
[Crossref] [PubMed]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
[Crossref]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
[Crossref] [PubMed]

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Ge, Y.

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

Gkoumas, S.

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Gureyev, T. E.

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D Appl. Phys. 47(10), 105402 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Hagen, C. K.

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
[Crossref] [PubMed]

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
[Crossref]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Horrocks, J. A.

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Ignatyev, K.

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13922–13927 (2012).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18(19), 19681–19692 (2010).
[Crossref] [PubMed]

Johnson, B.

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Jones, J. L.

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Li, K.

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

Longo, R.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Lopez, F. C.

Menk, R. H.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Millard, T. P.

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

Miller, P. R.

Munro, P. R. T.

P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
[Crossref] [PubMed]

F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
[Crossref] [PubMed]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13922–13927 (2012).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18(19), 19681–19692 (2010).
[Crossref] [PubMed]

Nesterets, Y. I.

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D Appl. Phys. 47(10), 105402 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

Olivo, A.

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. C. Diemoz, F. A. Vittoria, and A. Olivo, “Spatial resolution of edge illumination X-ray phase-contrast imaging,” Opt. Express 22(13), 15514–15529 (2014).
[Crossref] [PubMed]

P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
[Crossref] [PubMed]

P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
[Crossref] [PubMed]

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
[Crossref] [PubMed]

P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
[Crossref] [PubMed]

A. Olivo, P. C. Diemoz, and A. Bravin, “Amplification of the phase contrast signal at very high x-ray energies,” Opt. Lett. 37(5), 915–917 (2012).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13922–13927 (2012).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18(19), 19681–19692 (2010).
[Crossref] [PubMed]

A. Olivo and R. D. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Pani, S.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Pešic, Z. D.

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

Pogany, A.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Poropat, P.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Prest, M.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Rau, C.

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

Rigon, L.

F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28), 6940–6947 (2013).
[Crossref] [PubMed]

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Robinson, I. K.

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

Sanchez del Rio, M.

R. J. Dejus and M. Sanchez del Rio, “XOP: A Graphical User Interface for Spectral Calculations and X-Ray Optics Utilities,” Rev. Sci. Instrum. 67(9), 3356 (1996).
[Crossref]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Speller, R. D.

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13922–13927 (2012).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18(19), 19681–19692 (2010).
[Crossref] [PubMed]

A. Olivo and R. D. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

Stevenson, A. W.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Szafraniec, M. B.

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
[Crossref] [PubMed]

Teague, M. R.

Tromba, G.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Vallazza, E.

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

Vinnicombe, S. J.

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Vittoria, F. A.

Wilkins, S. W.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Zambelli, J.

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

Zapata, C. E.

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Endrizzi, P. C. Diemoz, T. P. Millard, J. L. Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104(2), 024106 (2014).
[Crossref]

A. Olivo and R. D. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103(24), 244104 (2013).
[Crossref]

J. Appl. Phys. (1)

C. K. Hagen, P. Coan, A. Bravin, A. Olivo, and P. C. Diemoz, “A continuous sampling scheme for edge illumination x-ray phase contrast imaging,” J. Appl. Phys. 118(5), 054901 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Conf. Ser. (1)

P. C. Diemoz, M. Endrizzi, C. K. Hagen, C. Rau, A. Bravin, R. D. Speller, I. K. Robinson, and A. Olivo, “Edge illumination X-ray phase-contrast imaging: nanoradian sensitivity at synchrotrons and translation to conventional sources,” J. Phys. Conf. Ser. 499, 012006 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. I. Nesterets and T. E. Gureyev, “Noise propagation in x-ray phase-contrast imaging and computed tomography,” J. Phys. D Appl. Phys. 47(10), 105402 (2014).
[Crossref]

Med. Phys. (2)

A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8), 1610–1619 (2001).
[Crossref] [PubMed]

A. Olivo, S. Gkoumas, M. Endrizzi, C. K. Hagen, M. B. Szafraniec, P. C. Diemoz, P. R. T. Munro, K. Ignatyev, B. Johnson, J. A. Horrocks, S. J. Vinnicombe, J. L. Jones, and R. D. Speller, “Low-dose phase contrast mammography with conventional x-ray sources,” Med. Phys. 40(9), 090701 (2013).
[Crossref] [PubMed]

Nature (1)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Opt. Express (7)

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[Crossref] [PubMed]

P. C. Diemoz, A. Olivo, M. Endrizzi, and A. Olivo, “On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22(23), 28199–28214 (2014).
[Crossref] [PubMed]

P. C. Diemoz, F. A. Vittoria, and A. Olivo, “Spatial resolution of edge illumination X-ray phase-contrast imaging,” Opt. Express 22(13), 15514–15529 (2014).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express 18(19), 19681–19692 (2010).
[Crossref] [PubMed]

P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21(9), 11187–11201 (2013).
[Crossref] [PubMed]

C. Y. Chou and M. A. Anastasio, “Influence of imaging geometry on noise texture in quantitative in-line X-ray phase-contrast imaging,” Opt. Express 17(17), 14466–14480 (2009).
[Crossref] [PubMed]

P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express 20(3), 2789–2805 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

K. Li, J. Zambelli, N. Bevins, Y. Ge, and G. H. Chen, “Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements,” Phys. Med. Biol. 58(12), 4119–4135 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. C. Diemoz, M. Endrizzi, C. E. Zapata, Z. D. Pešić, C. Rau, A. Bravin, I. K. Robinson, and A. Olivo, “X-ray phase-contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110(13), 138105 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13922–13927 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (4)

T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84(8), 083702 (2013).
[Crossref] [PubMed]

R. J. Dejus and M. Sanchez del Rio, “XOP: A Graphical User Interface for Spectral Calculations and X-Ray Optics Utilities,” Rev. Sci. Instrum. 67(9), 3356 (1996).
[Crossref]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the EI setup when implemented with a conventional X-ray tube (not to scale).
Fig. 2
Fig. 2 (a) Examples of transmission and refraction sensitivity functions f T ( y ) and f R ( y ) . (see text for the considered experimental parameters). (b) Example of EI signal measured in the case of a cylindrical object producing both absorption and refraction.
Fig. 3
Fig. 3 (a) Phase and signal profiles for a sinusoidal nylon object with 30 µm maximum thickness at 40 keV, calculated using rigorous wave optics (see text for details on experimental parameters). Comparison between | CTF | calculated in near-field approximation and the corresponding quantity from wave optics simulations, for: a) maximum object thickness of 1 µm, b) maximum object thickness of 50 µm.
Fig. 4
Fig. 4 Comparison between | CTF | calculated in near-field approximation and the corresponding quantity from wave optics simulations (laboratory setup, see text for details): a) in the case of a maximum object thickness dependent on the frequency, with thickness= f y 1 , b) in the case of a fixed maximum object thickness of 50 µm, but with smoothed mask apertures ( σ ap =1μm ).
Fig. 5
Fig. 5 CTFS calculated for different XPCi laboratory setups: a) EI with sample aperture sizes of 15, 20 or 30 µm (see text for the values of the other experimental parameters), b) FSP with different source-detector combinations: source FWHM = 70 µm and pixel size = 50 µm, source FWHM = 70 µm and pixel size = 20 µm, source FWHM = 40 µm and pixel size = 10 µm (see text for the values of the other experimental parameters).
Fig. 6
Fig. 6 Comparison of EI and FSP CTFs. a) EI setup with source FWHM = 70 μm and sample aperture = 20 μm sample aperture, “moderate resolution” FSP setup with source FWHM = 70 µm and pixel size = 50 µm, “high resolution” FSP setup with source FWHM = 40 µm and pixel size = 10 µm. b) Ratio | CT F FSP / CT F EI | in the case of the “moderate resolution” FSP setup. c) Ratio | CT F FSP / CT F EI | in the case of the “high resolution” FSP setup. Note that, in the latter plot, the two peaks correspond to the zeros of CT F EI .

Tables (1)

Tables Icon

Table 1 Glossary.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

S EI ( p )= y e y e +d dy[ I point ( y;p ) g s,p ( y ) ]
I point ( My;p )= M 1 I 0 | [ q( yp )m( y ) ] h z def ( y ) | 2
S EI ( p )= I 0 [ T f T ]( p )+ I 0 k 1 [ T ϕ y f R ]( p )
f T ( y )=[ g s,r rec t d/M ]( y+ y e /M +d/ 2M )rec t a ( y )
f R ( y )=[ g s,r ( y e /M +y ) g s,r ( y e /M +d/M +y ) ] z def rec t a ( y )
S EI ( p )= I 0 F T + I 0 k 1 [ ϕ y f R ]( p )
C EI ( p ) S EI ( p ) S EI,ref S EI,ref = F T 1 k 1 [ ϕ y f R ]( p )
F{ C EI }= F T 1 k 1 2πi f y F{ f R }F{ ϕ }=CT F EI ( f y )F{ ϕ }
f R ( y )= g s,r ( y ) z def rec t a ( y )
CT F EI ( f y )=4iπ a 1 k 1 f y F{ f R }
CT F EI ( f y )=4iπ a 1 k 1 z def f y [ F{ g s,r }F{ rec t a } ]( f y )=4iπ a 1 k 1 z def f y [ sin( πa f y ) π f y ][ exp( 2 σ s,r 2 π 2 f y 2 ) ]
F R = z def Ma /2 Ma /2 dy g s,r ( y ) = z def Ma Ic y e
CT F EI ( f y )=4iπ k 1 f y M z def Ic y e
C EI ( p )= z 2 1 Ic Ic y e Δ θ y ( p )
I FSP ( y )=[ I FSP,point g s,p ]( y )
I FSP,point ( My )= M 1 I 0 T( y ) M 1 I 0 k 1 z def T( y ) 2 ϕ y 2 ( y )
S FSP ( p )=[ I FSP f det ]( p )
f det ( y )=[ g d rec t Δp ]( y )
S FSP ( p )= I 0 Δp M 1 T( p ) I 0 k 1 z def T( p )[ 2 ϕ y 2 f s,d ]( p )
C FSP ( p ) S FSP ( p ) S FSP,ref S FSP,ref = k 1 MΔ p 1 z def [ 2 ϕ y 2 f s,d ]( p )
F{ C FSP }= k 1 MΔ p 1 z def 4 π 2 f y 2 F{ ϕ }F{ f s,d }=CT F FSP ( f y )F{ ϕ }
CT F FSP ( f y ) k 1 MΔ p 1 z def 4 π 2 f y 2 F{ f s,d }
CT F FSP ( f y )= k 1 MΔ p 1 z def 4π f y sin( π f y Δp M 1 )exp[ 2( σ d,r 2 + σ s,r 2 ) π 2 f y 2 ]
CT F EI CT F FSP ( f y )= i a 1 F{ f R } MΔ p 1 z def π f y F{ f s,d } = iΔp[ sin( πa f y ) π f y ][ exp( 2 σ s,r 2 π 2 f y 2 ) ] aMsin( π f y Δp M 1 )exp[ 2( σ d,r 2 + σ s,r 2 ) π 2 f y 2 ]
CT F EI CT F FSP ( f y )= iΔp Ic / y e sin( π f y Δp M 1 ) i π 1 f y 1 M Ic y e
CT F EI CT F FSP ( f y )= iΔp[ sin( πa f y ) π f y exp( 2 σ ap 2 π 2 f y 2 ) ][ exp( 2( σ s,r 2 + M 2 σ ap 2 ) π 2 f y 2 ) ] aMsin( π f y Δp M 1 )exp[ 2( σ d,r 2 + σ s,r 2 ) π 2 f y 2 ]

Metrics