Abstract

We report the fabrication of a phase photon sieve (PS) on the tip of a standard single mode fiber by focused ion beam (FIB) milling. The fiber tip was dip-coated with a conductive polymer (PEDOT:PSS) as an alternative, more advantageous method to the metallization prior to FIB milling. The near field scans of the intensity profile along the optical axis under fiber illumination of a laser at λ = 1.55 μm are presented. We have analyzed the focusing properties and demonstrated the validity of our structure for light coupling into silicon photonics waveguides with improved efficiency and alignment tolerance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of photon sieves by laser ablation and optical properties

Matthew N. Julian, David G. MacDonnell, and Mool C. Gupta
Opt. Express 25(25) 31528-31538 (2017)

Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling

Fu Yong-Qi, Ngoi Kok Ann Bryan, and Ong Nan Shing
Opt. Express 7(3) 141-147 (2000)

Ultra-large multi-region photon sieves

Zhifeng Chen, Chinhua Wang, Donglin Pu, Jin Hu, and Linsen Chen
Opt. Express 18(15) 16279-16288 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
    [Crossref]
  2. R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
    [Crossref]
  3. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005).
    [Crossref] [PubMed]
  4. J. Han, M. Sparkes, and W. O’Neill, “Controlling the optical fiber output beam profile by focused ion beam machining of a phase hologram on fiber tip,” Appl. Opt. 54(4), 890–894 (2015).
    [Crossref] [PubMed]
  5. J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
    [Crossref]
  6. D. C. O’Shea, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004).
  7. E. Hecht, Optics (Addison-Wesley, 2002).
  8. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
    [Crossref] [PubMed]
  9. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
    [Crossref] [PubMed]
  10. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).
    [Crossref] [PubMed]
  11. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19(12), 2387–2393 (2002).
    [Crossref] [PubMed]
  12. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14(25), 11958–11963 (2006).
    [Crossref] [PubMed]
  13. Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17(15), 12418–12423 (2009).
    [Crossref] [PubMed]
  14. A. Sabatyan and S. Mirzaie, “Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes,” Appl. Opt. 50(11), 1517–1522 (2011).
    [Crossref] [PubMed]
  15. J. Jia and C.-Q. Xie, “Phase zone photon sieve,” Chin. Phys. B. 18(1), 183–188 (2009).
    [Crossref]
  16. Y. Wang, K. Kumar, L. Wang, and X. Zhang, “Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes,” Opt. Express 20(6), 6657–6668 (2012).
    [Crossref] [PubMed]
  17. A. Sabatyan and S. A. Hoseini, “Diffractive performance of a photon-sieve-based axilens,” Appl. Opt. 53(31), 7331–7336 (2014).
    [Crossref] [PubMed]
  18. B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
    [Crossref]
  19. Y. Fu and N. Bryan, “Influence of astigmatism on the fabrication of diffractive structures by use of focused ion-beam milling,” Opt. Express 12(17), 3954–3966 (2004).
    [Crossref] [PubMed]
  20. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  21. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
    [Crossref] [PubMed]
  22. J. Viegas and P. Xing, “Rapid prototyping of coupled photonic cavities by focused ion beam/photolithography hybrid technique,” Proc. SPIE Vol. 8974, 89740H (2014).
  23. MATLAB and Image Processing Toolbox Release, The MathWorks, Inc., Natick, Massachusetts, USA.

2015 (2)

J. Han, M. Sparkes, and W. O’Neill, “Controlling the optical fiber output beam profile by focused ion beam machining of a phase hologram on fiber tip,” Appl. Opt. 54(4), 890–894 (2015).
[Crossref] [PubMed]

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

2014 (1)

2012 (1)

2011 (3)

2010 (1)

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

2009 (3)

J. Jia and C.-Q. Xie, “Phase zone photon sieve,” Chin. Phys. B. 18(1), 183–188 (2009).
[Crossref]

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17(15), 12418–12423 (2009).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2003 (1)

2002 (1)

2001 (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Andersen, G.

Backman, V.

Barbastathis, G.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Bryan, N.

Burnett, A. L.

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

Cao, Q.

Chen, Y.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Chen, Z.

Choi, H. Y.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Dai, H. T.

Farahi, F. A.

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

Fried, N. M.

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

Fu, Y.

Furlan, W. D.

Gao, C.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Gil, D.

Giménez, F.

Guerreiro, A.

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

Guo, H.-B.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Han, J.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Herzig, H. P.

Hoseini, S. A.

Huang, T. J.

Huq, E.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Jahns, J.

Jia, J.

J. Jia and C.-Q. Xie, “Phase zone photon sieve,” Chin. Phys. B. 18(1), 183–188 (2009).
[Crossref]

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Jorge, P. A. S.

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

Kim, J.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Kim, J. K.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Kim, M.-S.

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Kumar, K.

Lagoda, G. A.

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

Lee, B.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Li, J.-X.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Liu, R.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Liu, Y. J.

Lu, B.-R.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Mayeh, M.

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

Menon, R.

Mirzaie, S.

Monsoriu, J. A.

Mühlig, S.

O’Neill, W.

Oh, K.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Pons, A.

Qu, X.-P.

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Rockstuhl, C.

Rodrigues Ribeiro, R. S.

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

Sabatyan, A.

Scharf, T.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Shin, W.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Smith, H. I.

Sohn, I.-B.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Soppera, O.

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

Sparkes, M.

Sun, X. W.

Taflove, A.

Tozburun, S.

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

Viegas, J.

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

Wang, L.

Wang, Y.

Xie, C.-Q.

J. Jia and C.-Q. Xie, “Phase zone photon sieve,” Chin. Phys. B. 18(1), 183–188 (2009).
[Crossref]

Zhang, X.

Appl. Opt. (3)

Chin. Phys. B. (1)

J. Jia and C.-Q. Xie, “Phase zone photon sieve,” Chin. Phys. B. 18(1), 183–188 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Tozburun, M. Mayeh, G. A. Lagoda, F. A. Farahi, A. L. Burnett, and N. M. Fried, “A compact laparoscopic probe for optical stimulation of the prostate nerves,” IEEE J. Sel. Top. Quantum Electron. 16(4), 941–945 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

J. Opt. Soc. Am. A (3)

Microelectron. Eng. (1)

B.-R. Lu, J.-X. Li, H.-B. Guo, C. Gao, E. Huq, X.-P. Qu, Y. Chen, and R. Liu, “Dielectric Fresnel zone plates on optical fibers for micro-focusing applications,” Microelectron. Eng. 88(8), 2650–2652 (2011).
[Crossref]

Nature (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (1)

R. S. Rodrigues Ribeiro, O. Soppera, J. Viegas, A. Guerreiro, and P. A. S. Jorge, “The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods,” Proc. SPIE 9379, 93790N (2015).
[Crossref]

Other (4)

D. C. O’Shea, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004).

E. Hecht, Optics (Addison-Wesley, 2002).

J. Viegas and P. Xing, “Rapid prototyping of coupled photonic cavities by focused ion beam/photolithography hybrid technique,” Proc. SPIE Vol. 8974, 89740H (2014).

MATLAB and Image Processing Toolbox Release, The MathWorks, Inc., Natick, Massachusetts, USA.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) Underlying FZP dimensions and zone plate order numbering used for photon sieve generation. (b) 3D rendering of the photon sieve for etch depth detch = 1.74 μm.
Fig. 2
Fig. 2 (a) Intensity distribution on the XZ plane for a photon sieve matching the ideal design of Table 1. (b) Axial field intensity dependence on the etch depth.
Fig. 3
Fig. 3 Waist variation of the input field on the FDTD simulation of the PS with cylindrical pillars (with detch = 1.74 µm). Waist radii used were: (a) 3.0 μm, (b) 4.1 μm, (c) 5.2 μm, (d) 6.3 μm and (e) 7.4 μm.
Fig. 4
Fig. 4 Plot of the intensity along the optical axis for different simulated launch beam waist radii, as shown in Fig. 3.
Fig. 5
Fig. 5 (a) Lumerical FDTD photon sieve topography used for simulations presented in Fig. 6, obtained from (b) SEM micrograph of actual fabricated photon sieve. Note that (a) and (b) have different observation perspectives. Scale bar dimension is 5 µm.
Fig. 6
Fig. 6 XZ cross section of the intensity field profile by FDTD simulations of the PS accounting for the parabolic shape and decreasing height of the pillars on the fabricated PS (detch = 1.74 µm) with (a) Centered source at 1550 nm operation wavelength, (b) Centered source at 1540nm operation wavelength and (c) 1 μm x-coordinate displaced source at 1550nm operation wavelength.
Fig. 7
Fig. 7 SMF28e optical fiber etched in 9.6% HF buffered gel for a) 5 min, b) 10 min, c) 20 min and d) 40 min. It is visible the preferred etching of the fiber core. The etch depth in the core of the optical fiber is a) 325 nm, b) 590 nm, c) 1105 nm and d) 2365 nm. Scale bar dimension is 5 µm.
Fig. 8
Fig. 8 (a) Bitmap controlling the exposure scanning of the FIB, defining a photon sieve with 10 orders and (b) SEM micrograph top view of the fabricated structure.
Fig. 9
Fig. 9 Experimental setup for near field diffraction pattern scanning: a - SMF28e optical fiber; b - patterned fiber tip under test; c - tapered fiber probe. Inset: details of the fiber tip and tapered probe fiber.
Fig. 10
Fig. 10 Measured phase photon sieve near field distribution at: (a) 3.9 µm, (b) 8.9 µm, (c) 9.9 µm and (d) 16.4 µm from the patterned fiber end.
Fig. 11
Fig. 11 XZ longitudinal-section of the measured power profile of the fabricated phase PS, as collected with a scanning tapered lensed fiber.
Fig. 12
Fig. 12 Optical power collected by the tapered scanning fiber at the center of the optical field distribution as a function of the separation between photon-sieve and the tapered probe fiber.
Fig. 13
Fig. 13 XY cross-section of the experimentally measured field intensity at 0.25 µm from the fiber end.
Fig. 14
Fig. 14 FDTD simulation for the PS with parabolic and varying height pillars with an absorbing coating on the top of the central pillar, and 1 µm shifted illumination; (a) XZ longitudinal cut of the intensity profile, and (b) XY cross-section of the field intensity at Z = 0.25 µm.
Fig. 15
Fig. 15 1D scans of the power coupled into a Si single mode waveguide at different distances z, measured between the waveguide and the probe tip. The probes tested were a commercial conical lensed single mode fiber tip with (1 ± 0.25) μm spot size (LaseOptics) and the PS fiber tip. A cleaved SMF28e fiber was used in all experiments to collect light from the Si waveguide towards the fiber-coupled photodetector. The fibers and the Si waveguide are axially aligned when X is equal to 10 μm.
Fig. 16
Fig. 16 2D spatial plots of the coupled power into the waveguide with (a) LaseOptics probe and (b) photon sieve probe. X coordinate represents the lateral shift between the silicon photonics waveguide and each fiber under test and the Z coordinate represents the axial separation between the silicon waveguide edge and the fiber tip. The fibers and the Si waveguide are axially aligned when X is equal to 10 μm.
Fig. 17
Fig. 17 (a) −3dB width and (b) peak value of the coupled power into the waveguide for the two tested fibers as a function of the separation between the fibers’ tip and the Si waveguide.

Tables (2)

Tables Icon

Table 1 Dimensions of the Underlying FZP of Fiber Phase Photon Sieve

Tables Icon

Table 2 Height of the Pillars of the Fabricated Phase Photon Sieve

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r n = nλf+ n 2 λ 2 4
d etch = λ 2( n eff n medium )

Metrics