Abstract

We compare OFDM and PAM for 400G Ethernet based on a 3-bit high baudrate IM/DD interface at 1550nm. We demonstrate 27Gb/s and 32Gb/s transmission over 10km SSMF using OFDM and PAM respectively. We show that capacity can be improved through adaptation/equalization to achieve 42Gb/s and 64Gb/s for OFDM and PAM respectively. Experimental results are used to create realistic simulations to extrapolate the performance of both modulation formats under varied conditions. For the considered interface we found that PAM has the best performance, OFDM is impaired by quantization noise. When the resolution limitation is relaxed, OFDM shows better performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of 100G PAM-8, CAP-64 and DFT-S OFDM with a bandwidth-limited direct-detection receiver

Jianyang Shi, Junwen Zhang, Nan Chi, and Jianjun Yu
Opt. Express 25(26) 32254-32262 (2017)

32-GS/s 6-bit DAC based on SiGe technology for IM-DD OFDM systems with non-uniform quantization

Weizhong Li, Daojun Xue, Lei Zhou, Ming Luo, Xiang Li, Jie Li, Feng Jiang, and Shaohua Yu
Opt. Express 27(6) 8121-8129 (2019)

Low-complexity recombined SLM scheme for PAPR reduction in IM/DD optical OFDM systems

Yating Wu, Congcong He, Qianwu Zhang, Yanzan Sun, and Tao Wang
Opt. Express 26(24) 32237-32247 (2018)

References

  • View by:
  • |
  • |
  • |

  1. IEEE802.org, “IEEE P802.3bs 400 Gb/s Ethernet Task Force,” [Online]. Available: http://www.ieee802.org/3/bs/ . [Accessed: 02-Feb-2016].
  2. J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  3. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic/Elsevier, 2010).
  4. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  5. Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.
  6. T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.
  7. Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.
  8. A. Abbasi, C. Spatharakis, G. Kanakis, N. S. André, H. Louchet, A. Katumba, J. Verbist, H. Avramopoulos, P. Bienstman, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser,” J. Lightwave Technol. 34(8), 1683–1687 (2016).
    [Crossref]
  9. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Elect. 20(10), 1208–1216 (1984).
    [Crossref]
  10. A. J. Lowery, “Improving sensitivity and spectral efficiency in direct-detection optical OFDM systems,” in Proc. OFC/NFOEC (2008), paper OMM4.
  11. C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36(2), 151–153 (2011).
    [Crossref] [PubMed]
  12. C. R. Berger, Y. Benlachtar, R. I. Killey, and P. A. Milder, “Theoretical and experimental evaluation of clipping and quantization noise for optical OFDM,” Opt. Express 19(18), 17713–17728 (2011).
    [Crossref] [PubMed]
  13. E. Vanin, “Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion,” Opt. Express 19(5), 4280–4293 (2011).
    [Crossref] [PubMed]
  14. N. S. André, H. Louchet, K. Habel, and A. Richter, “33% Capacity improvement of a direct-modulation direct-detection OFDM link using adaptive Volterra equalization,” in Proc. ECOC (2014), paper P312.

2016 (1)

2015 (1)

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

2012 (1)

2011 (3)

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Elect. 20(10), 1208–1216 (1984).
[Crossref]

Abbasi, A.

André, N. S.

Avramopoulos, H.

Bauwelinck, J.

Benlachtar, Y.

Berger, C. R.

Bienstman, P.

Cheng, Q.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Cunningham, D. G.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic/Elsevier, 2010).

Drenski, T.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

Goi, K.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Habel, K.

N. S. André, H. Louchet, K. Habel, and A. Richter, “33% Capacity improvement of a direct-modulation direct-detection OFDM link using adaptive Volterra equalization,” in Proc. ECOC (2014), paper P312.

Ingham, J. D.

Ishihara, H.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Kai, Y.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

Kanakis, G.

Katumba, A.

Killey, R. I.

Li, L.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Liu, B.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

Louchet, H.

Lowery, A. J.

A. J. Lowery, “Improving sensitivity and spectral efficiency in direct-detection optical OFDM systems,” in Proc. OFC/NFOEC (2008), paper OMM4.

Matsuda, M.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Elect. 20(10), 1208–1216 (1984).
[Crossref]

Milder, P. A.

Morthier, G.

Nishihara, M.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

Ogawa, K.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Okabe, R.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Penty, R. V.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Rasmussen, J. C.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Richter, A.

N. S. André, H. Louchet, K. Habel, and A. Richter, “33% Capacity improvement of a direct-modulation direct-detection OFDM link using adaptive Volterra equalization,” in Proc. ECOC (2014), paper P312.

Roelkens, G.

Shieh, W.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic/Elsevier, 2010).

Spatharakis, C.

Takabayashi, K.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Takahara, T.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

Tanaka, T.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

Tao, Z.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Vanin, E.

Verbist, J.

Wei, C.

Wei, J. L.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

White, I. H.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Yan, W.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Yin, X.

IEEE Commun. Mag. (1)

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE J. Quantum Elect. (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Elect. 20(10), 1208–1216 (1984).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (1)

Other (7)

N. S. André, H. Louchet, K. Habel, and A. Richter, “33% Capacity improvement of a direct-modulation direct-detection OFDM link using adaptive Volterra equalization,” in Proc. ECOC (2014), paper P312.

A. J. Lowery, “Improving sensitivity and spectral efficiency in direct-detection optical OFDM systems,” in Proc. OFC/NFOEC (2008), paper OMM4.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and Discrete Multi-Tone (DMT) for short-reach 400-Gbps data communication,” in Proc. ECOC, 2013, paper Th1F3.

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. C. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. OFC/NFOEC (2014), paper M2I5.

Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, H. Ishihara, K. Goi, and K. Ogawa, “130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm,” in Proc OFC (2015), paper Th4A1.

IEEE802.org, “IEEE P802.3bs 400 Gb/s Ethernet Task Force,” [Online]. Available: http://www.ieee802.org/3/bs/ . [Accessed: 02-Feb-2016].

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic/Elsevier, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental OFDM@32Gbaud (a) 8PAM@60Gbaud (b) at the DAC output. For reference, the original OFDM signal is shown (a).
Fig. 2
Fig. 2 Experimental setup where the BPG+DAC feed an intensity driven MZM.
Fig. 3
Fig. 3 Simulated OFDM spectra showing power fading evolution (a). Capacity comparison between PAM and OFDM with 3-bit resolution (b) (black stars show experimental results).
Fig. 4
Fig. 4 Capacity comparison using simulations. PAM and OFDM transmissions at BTB and 5km for different DAC resolutions (a) and PAM with DFE and 6-bit OFDM with bit-and-power loading (b).

Metrics