Abstract

Photonic generation of microwave waveforms is currently an interesting topic due to the advantages of large bandwidth and immunity to electromagnetic interference. In this paper, a photonic microwave waveform generator with tunable waveforms and repetition rates is proposed and experimentally demonstrated. A continuous-wave (CW) light is phase modulated by a local oscillator (LO) signal to generate optical sidebands. By locating the phase modulator (PM) in a Sagnac loop, we can control the intensity and phase of the carrier of the phase modulated signal. Then a compact tunable dispersion compensation module is used to introduce phase shifts to the optical sidebands. Thanks to the flexible controlling of the optical signal, the generation of microwave waveforms with tunable shapes and repetition rates can be realized. In the demonstration experiment, full-duty-cycle triangular and square waveforms with repetition rates of 5 and 10 GHz (bandwidths of 15 and 30 GHz) are successfully generated, respectively. The bandwidths are expected to be improved to above 120 GHz if larger-bandwidth measurement instruments are used. In addition to the flexible tunability, the proposed scheme also features the advantages of easy implementation and free from bias drift.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic microwave waveforms generation based on time-domain processing

Yang Jiang, Chuang Ma, Guangfu Bai, Xiaosi Qi, Yanlin Tang, Zhenrong Jia, Yuejiao Zi, Fengqin Huang, and Tingwei Wu
Opt. Express 23(15) 19442-19452 (2015)

Photonic generation of microwave waveforms based on a dual-polarization quadrature phase-shift-keying modulator

Xiangrui Li, Aijun Wen, Zhaoyang Tu, and Zhongguo Xiu
Appl. Opt. 57(25) 7398-7401 (2018)

Generation of triangular waveforms based on a microwave photonic filter with negative coefficient

Wei Li, Wen Ting Wang, Wen Hui Sun, Wei Yu Wang, and Ning Hua Zhu
Opt. Express 22(12) 14993-15001 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” in Proc. 34th European Conference on Optical Communication (ECOC), Brussels, Belgium (2008), Paper Mo.3.F.4.
    [Crossref]
  2. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26(8), 1492–1496 (2009).
    [Crossref]
  3. H. Rohling and M. M. Meinecke, “Waveform design principles for automotive radar systems,” in Proc. IEEE CIE International Conference on Radar (2001), Paper 1-4.
    [Crossref]
  4. Y. S. Won, C. H. Kim, and S.-G. Lee, “Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar—A Feasibility Study,” IEEE Sens. J. 15(12), 7142–7149 (2015).
    [Crossref]
  5. F. Parmigiani, M. Ibsen, T. T. Ng, L. A. Provost, P. Petropoulos, and D. J. Richardson, “Efficient optical wavelength conversion using triangular pulses generated using a superstructured fiber Bragg grating,” in Proc. 2008 Optical Fiber Communication Conf. (OFC’08), San Diego, CA (2008), Paper OMP3.
  6. S. W. Cho, A. Rassau, and W. Gornisiewicz, “Monocycle pulse generator for an inter/intra-chip UWB wireless interconnect communication system,” in Proc. 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Polytronic (2007), Paper 217–219.
    [Crossref]
  7. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  8. J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
    [Crossref]
  9. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  10. W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
    [Crossref]
  11. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
    [Crossref]
  12. Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
    [Crossref]
  13. H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
    [Crossref]
  14. A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
    [Crossref] [PubMed]
  15. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  16. H. Y. Jiang, L. S. Yan, Y. F. Sun, J. Ye, W. Pan, B. Luo, and X. H. Zou, “Photonic arbitrary waveform generation based on crossed frequency to time mapping,” Opt. Express 21(5), 6488–6496 (2013).
    [Crossref] [PubMed]
  17. J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
    [Crossref]
  18. F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).
  19. J. Li, X. Zhang, B. Hraimel, T. Ning, L. Pei, and K. Wu, “Performance analysis of a photonic-assisted periodic triangular-shaped pulses generator,” J. Lightwave Technol. 30(11), 1617–1624 (2012).
    [Crossref]
  20. B. Dai, Z. Gao, X. Wang, H. Chen, N. Kataoka, and N. Wada, “Generation of Versatile Waveforms From CW Light Using a Dual-Drive Mach-Zehnder Modulator and Employing Chromatic Dispersion,” J. Lightwave Technol. 31(1), 145–151 (2013).
    [Crossref]
  21. W. Li, W. Y. Wang, W. H. Sun, W. T. Wang, J. G. Liu, and N. H. Zhu, “Photonic generation of triangular pulses based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(16), 4758–4761 (2014).
    [Crossref] [PubMed]
  22. F. Zhang, X. Ge, and S. Pan, “Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal,” Opt. Lett. 38(21), 4491–4493 (2013).
    [Crossref] [PubMed]
  23. W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
    [Crossref]
  24. X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. 32(20), 3797–3802 (2014).
    [Crossref]
  25. W. Li, W. T. Wang, and N. H. Zhu, “Photonic generation of radiofrequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
    [Crossref]
  26. W. Liu and J. Yao, “Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loop,” J. Lightwave Technol. 32(20), 3637–3644 (2014).
    [Crossref]
  27. Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
    [Crossref]
  28. G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
    [Crossref]
  29. Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, “Compensation of the dispersion-induced power fading in an analog photonic link based on PM-IM conversion in a Sagnac loop,” J. Lightwave Technol. 33(13), 2899–2904 (2015).
    [Crossref]
  30. Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
    [Crossref]
  31. J. D. Bull, H. Kato, A. R. Reid, M. Fairburn, B. P. Tsou, D. R. Seniuk, P. H. Lu, and N. A. Jaeger, “Ultrahigh-speed polarization modulator,” in Conference on Lasers and Electro-Optics. Optical Society of America (2005), Paper JTuC54.

2016 (2)

F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

2015 (5)

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, “Compensation of the dispersion-induced power fading in an analog photonic link based on PM-IM conversion in a Sagnac loop,” J. Lightwave Technol. 33(13), 2899–2904 (2015).
[Crossref]

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

Y. S. Won, C. H. Kim, and S.-G. Lee, “Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar—A Feasibility Study,” IEEE Sens. J. 15(12), 7142–7149 (2015).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

2014 (4)

2013 (4)

2012 (1)

2011 (2)

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

2010 (4)

W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

2001 (1)

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

1994 (1)

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

Bhamber, R. S.

Boscolo, S.

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

Cao, J.

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

Chen, H.

Chen, Y.

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

Dai, B.

Dorschner, T. A.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Fijol, J. J.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Friedman, L. J.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Gao, B.

F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).

Gao, Y.

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, “Compensation of the dispersion-induced power fading in an analog photonic link based on PM-IM conversion in a Sagnac loop,” J. Lightwave Technol. 33(13), 2899–2904 (2015).
[Crossref]

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

Gao, Z.

Ge, X.

F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).

F. Zhang, X. Ge, and S. Pan, “Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal,” Opt. Lett. 38(21), 4491–4493 (2013).
[Crossref] [PubMed]

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

Greenblatt, A. S.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

Hraimel, B.

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Jiang, H. Y.

Jiang, W.

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Kataoka, N.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Kim, C. H.

Y. S. Won, C. H. Kim, and S.-G. Lee, “Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar—A Feasibility Study,” IEEE Sens. J. 15(12), 7142–7149 (2015).
[Crossref]

Latkin, A. I.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Lee, S.-G.

Y. S. Won, C. H. Kim, and S.-G. Lee, “Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar—A Feasibility Study,” IEEE Sens. J. 15(12), 7142–7149 (2015).
[Crossref]

Li, J.

Li, W.

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

W. Li, W. Y. Wang, W. H. Sun, W. T. Wang, J. G. Liu, and N. H. Zhu, “Photonic generation of triangular pulses based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(16), 4758–4761 (2014).
[Crossref] [PubMed]

W. Li, W. T. Wang, and N. H. Zhu, “Photonic generation of radiofrequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

Liang, D.

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

Liao, J.

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Liu, J.

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

Liu, J. G.

Liu, L.

Liu, W.

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

W. Liu and J. Yao, “Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loop,” J. Lightwave Technol. 32(20), 3637–3644 (2014).
[Crossref]

Liu, X.

Lu, B.

Luo, B.

Maleki, L.

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

McElhanon, R. W.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

Nguyen, H. Q.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Ning, T.

Palmaccio, L. A.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Pan, S.

F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).

F. Zhang, X. Ge, and S. Pan, “Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal,” Opt. Lett. 38(21), 4491–4493 (2013).
[Crossref] [PubMed]

Pan, W.

Pei, L.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Sun, W.

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

Sun, W. H.

Sun, Y. F.

Tian, S.

Turitsyn, S. K.

Vega, A.

Wada, N.

Wang, H.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Wang, W.

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

Wang, W. T.

W. Li, W. Y. Wang, W. H. Sun, W. T. Wang, J. G. Liu, and N. H. Zhu, “Photonic generation of triangular pulses based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(16), 4758–4761 (2014).
[Crossref] [PubMed]

W. Li, W. T. Wang, and N. H. Zhu, “Photonic generation of radiofrequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

Wang, W. Y.

Wang, X.

Wang, Y.

Weiner, A. M.

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Wen, A.

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, “Compensation of the dispersion-induced power fading in an analog photonic link based on PM-IM conversion in a Sagnac loop,” J. Lightwave Technol. 33(13), 2899–2904 (2015).
[Crossref]

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

Wen, H.

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Won, Y. S.

Y. S. Won, C. H. Kim, and S.-G. Lee, “Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar—A Feasibility Study,” IEEE Sens. J. 15(12), 7142–7149 (2015).
[Crossref]

Wu, K.

Xiang, P.

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Xiang, S.

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, “Compensation of the dispersion-induced power fading in an analog photonic link based on PM-IM conversion in a Sagnac loop,” J. Lightwave Technol. 33(13), 2899–2904 (2015).
[Crossref]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Yan, L.

Yan, L. S.

Yao, J.

W. Liu and J. Yao, “Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loop,” J. Lightwave Technol. 32(20), 3637–3644 (2014).
[Crossref]

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[Crossref]

W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

Ye, J.

Zhang, F.

F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).

F. Zhang, X. Ge, and S. Pan, “Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal,” Opt. Lett. 38(21), 4491–4493 (2013).
[Crossref] [PubMed]

Zhang, H.

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Zhang, X.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zheng, D.

Zheng, X.

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Zheng, Z.

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

Zhou, B.

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Zhu, N.

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

Zhu, N. H.

W. Li, W. Y. Wang, W. H. Sun, W. T. Wang, J. G. Liu, and N. H. Zhu, “Photonic generation of triangular pulses based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(16), 4758–4761 (2014).
[Crossref] [PubMed]

W. Li, W. T. Wang, and N. H. Zhu, “Photonic generation of radiofrequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

Zou, X.

Zou, X. H.

IEEE J. Sel. Top. Quantum Electron. (1)

H. Wang, Z. Zheng, D. E. Leaird, A. M. Weiner, T. A. Dorschner, J. J. Fijol, L. J. Friedman, H. Q. Nguyen, and L. A. Palmaccio, “20-fs pulse shaping with a 512-element phase-only liquid crystal modulator,” IEEE J. Sel. Top. Quantum Electron. 66(4), 718–727 (2001).
[Crossref]

IEEE Photonics J. (2)

W. Li, W. T. Wang, and N. H. Zhu, “Photonic generation of radiofrequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

Y. Gao, A. Wen, W. Liu, H. Zhang, and S. Xiang, “Photonic generation of triangular pulses based on phase modulation and spectrum manipulation,” IEEE Photonics J. 8(1), 7801609 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Liao, H. Wen, X. Zheng, P. Xiang, H. Zhang, and B. Zhou, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photonics Technol. Lett. 25(2), 126–128 (2013).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photonics Technol. Lett. 27(21), 2260–2263 (2015).
[Crossref]

W. Wang, W. Li, W. Sun, W. Wang, J. Liu, and N. Zhu, “Triangular microwave waveforms generation based on an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(5), 522–525 (2015).
[Crossref]

IEEE Sens. J. (1)

Y. S. Won, C. H. Kim, and S.-G. Lee, “Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar—A Feasibility Study,” IEEE Sens. J. 15(12), 7142–7149 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

J. Lightwave Technol. (7)

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modelling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1994).
[Crossref]

W. Li and J. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[Crossref]

J. Li, X. Zhang, B. Hraimel, T. Ning, L. Pei, and K. Wu, “Performance analysis of a photonic-assisted periodic triangular-shaped pulses generator,” J. Lightwave Technol. 30(11), 1617–1624 (2012).
[Crossref]

B. Dai, Z. Gao, X. Wang, H. Chen, N. Kataoka, and N. Wada, “Generation of Versatile Waveforms From CW Light Using a Dual-Drive Mach-Zehnder Modulator and Employing Chromatic Dispersion,” J. Lightwave Technol. 31(1), 145–151 (2013).
[Crossref]

W. Liu and J. Yao, “Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loop,” J. Lightwave Technol. 32(20), 3637–3644 (2014).
[Crossref]

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. 32(20), 3797–3802 (2014).
[Crossref]

Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, “Compensation of the dispersion-induced power fading in an analog photonic link based on PM-IM conversion in a Sagnac loop,” J. Lightwave Technol. 33(13), 2899–2904 (2015).
[Crossref]

J. Opt. (1)

Y. Gao, A. Wen, J. Cao, Y. Chen, and H. Zhang, “Linearization of an analog photonic link based on chirp modulation and fiber dispersion,” J. Opt. 17(3), 035705 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Processing of More Than 100 Spectral Comb Lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Opt. Commun. (1)

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[Crossref]

Opt. Eng. (1)

F. Zhang, B. Gao, X. Ge, and S. Pan, “Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng. 55(3), 03115 (2016).

Opt. Express (1)

Opt. Lett. (3)

Other (5)

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” in Proc. 34th European Conference on Optical Communication (ECOC), Brussels, Belgium (2008), Paper Mo.3.F.4.
[Crossref]

J. D. Bull, H. Kato, A. R. Reid, M. Fairburn, B. P. Tsou, D. R. Seniuk, P. H. Lu, and N. A. Jaeger, “Ultrahigh-speed polarization modulator,” in Conference on Lasers and Electro-Optics. Optical Society of America (2005), Paper JTuC54.

F. Parmigiani, M. Ibsen, T. T. Ng, L. A. Provost, P. Petropoulos, and D. J. Richardson, “Efficient optical wavelength conversion using triangular pulses generated using a superstructured fiber Bragg grating,” in Proc. 2008 Optical Fiber Communication Conf. (OFC’08), San Diego, CA (2008), Paper OMP3.

S. W. Cho, A. Rassau, and W. Gornisiewicz, “Monocycle pulse generator for an inter/intra-chip UWB wireless interconnect communication system,” in Proc. 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Polytronic (2007), Paper 217–219.
[Crossref]

H. Rohling and M. M. Meinecke, “Waveform design principles for automotive radar systems,” in Proc. IEEE CIE International Conference on Radar (2001), Paper 1-4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the microwave waveform generator based on phase modulation and tunable dispersion. LD: laser diode; PC: polarization controller; OC: optical circular; PBS: polarization beam splitter; PM: phase modulator; LO: local oscillator; Pol: polarizer; TDCM: tunable dispersion compensation module; PD: photodiode. Spectra of the optical signals (a) after PM (b) after polarizer and (c) after TDCM.
Fig. 2
Fig. 2 Required dispersion values as a function of LO frequency when generating triangular and square waveforms.
Fig. 3
Fig. 3 Measured spectra of the optical signals after the PM and before the PD when generating triangular waveforms using a 5-GHz LO signal.
Fig. 4
Fig. 4 Measured spectra (a, c) and waveforms (b, d) of the generated triangular waveforms with the repetition rate of 5 GHz (a-b) and 10 GHz (c-d).
Fig. 5
Fig. 5 Measured spectra of the optical signals after the PM and before the PD when generating square waveforms using a 5-GHz drive signal.
Fig. 6
Fig. 6 Measured spectra (a, c) and waveforms (b, d) of the generated square waveforms with the repetition rate of 5 GHz (a-b) and 10 GHz (c-d).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E C K ( t ) = 1 2 E i n ( t ) exp [ j m sin ( Ω t ) ] = 1 2 E i n ( t ) n = J n exp ( j n Ω t )
E P o l ( t ) = 1 2 E i n ( t ) exp [ j m sin ( Ω t ) ] C K cos α + 1 2 E i n ( t ) C C K sin α exp ( j θ ) = cos α 2 E i n ( t ) [ n = J n exp ( j n Ω t ) + tan α exp ( j θ ) ]
E T D C M ( t ) = E P o l ( t ) exp ( j n 2 φ ) cos α 2 E i n ( t ) { J 0 + tan α exp ( j θ ) + J 1 exp [ j ( Ω t + φ ) ] J 1 exp [ j ( Ω t + φ ) ] + J 2 exp [ j ( 2 Ω t + 4 φ ) ] + J 2 exp [ j ( 2 Ω t + 4 φ ) ] + J 3 exp [ j ( 3 Ω t + 9 φ ) ] J 3 exp [ j ( 3 Ω t + 9 φ ) ] }
i ( t ) = η E D ( t ) × E D ( t ) Γ 1 sin ( Ω t ) + Γ 2 cos ( 2 Ω t ) + Γ 3 sin ( 3 Ω t )
{ Γ 1 2 J 0 J 1 sin φ 2 J 1 J 2 sin 3 φ 2 J 2 J 3 sin 5 φ 2 J 1 tan α sin ( φ θ ) Γ 2 J 1 2 + 2 J 0 J 2 cos 4 φ + 2 J 1 J 3 cos 8 φ + 2 J 2 tan α cos ( 4 φ θ ) Γ 3 2 J 1 J 2 sin 3 φ 2 J 0 J 3 sin 9 φ 2 J 3 tan α sin ( 9 φ θ )
T t r i ( t ) sin ( Ω t ) 1 3 2 sin ( 3 Ω t ) + 1 5 2 sin ( 5 Ω t ) +
Γ 2 = 0 , Γ 1 / Γ 3 = 9
m = 0.91 , φ = 17.1 0 , α = 45 0 , θ = 15 0
T s q u ( t ) sin ( Ω t ) + 1 3 sin ( 3 Ω t ) + 1 5 sin ( 5 Ω t ) +
Γ 2 = 0 , Γ 1 / Γ 3 = 3
m = 2.2 , φ = 7.2 0 , α = 60 0 , θ = 111 0

Metrics