Abstract

A slab with relative permittivity ɛ = -1+ and permeability μ = ‑1+ has a critical distance away from the slab where a small particle will either be cloaked or imaged depending on whether it is located inside or outside that critical distance. We find that the optical force acting on a small cylinder under plane wave illumination reaches a maximum value at this critical distance. Contrary to the usual observation that superlens systems should be highly loss-sensitive, this maximum optical force remains a constant when loss is changed within a certain range. For a fixed particle-slab distance, increasing loss can even amplify the optical force acting on the small cylinder, contrary to the usual belief that loss compromises the response of supenlens.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong optical force induced by morphology-dependent resonances

Jack Ng, C. T. Chan, Ping Sheng, and Zhifang Lin
Opt. Lett. 30(15) 1956-1958 (2005)

Strong optical force acting on a dipolar particle over a multilayer substrate

Shubo Wang and C. T. Chan
Opt. Express 24(3) 2235-2241 (2016)

Optical forces on metallic nanoparticles induced by a photonic nanojet

Xudong Cui, Daniel Erni, and Christian Hafner
Opt. Express 16(18) 13560-13568 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
    [PubMed]
  3. A. Hayat, J. P. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
    [Crossref] [PubMed]
  4. S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
    [Crossref]
  5. S. Wang and C. T. Chan, “Strong optical force acting on a dipolar particle over a multilayer substrate,” Opt. Express 24(3), 2235–2241 (2016).
    [Crossref] [PubMed]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
    [Crossref]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  8. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” Phys. Cond. Matter. 15(37), 6345–6364 (2003).
    [Crossref]
  9. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005).
    [Crossref] [PubMed]
  10. G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
    [Crossref]
  11. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 462(2074), 3027–3059 (2006).
    [Crossref]
  12. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
    [Crossref] [PubMed]
  13. J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
    [Crossref]
  14. R. Borghi, F. Frezza, G. Schettini, F. Gori, and M. Santarsiero, “Plane-wave scattering by a set of perfectly conducting circular cylinders in the presence of a plane surface,” J. Opt. Soc. Am. A 13(12), 2441–2452 (1996).
    [Crossref]
  15. R. Borghi, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a dielectric circular cylinder parallel to a general reflecting flat surface,” J. Opt. Soc. Am. A 14(7), 1500–1504 (1997).
    [Crossref]
  16. J. M. Auñón and M. Nieto-Vesperinas, “Optical forces from evanescent Bessel beams, multiple reflections, and Kerker conditions in magnetodielectric spheres and cylinders,” J. Opt. Soc. Am. A 31(9), 1984–1992 (2014).
    [Crossref] [PubMed]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1998).

2016 (1)

2015 (2)

A. Hayat, J. P. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

2014 (2)

2011 (1)

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

2007 (1)

2006 (1)

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 462(2074), 3027–3059 (2006).
[Crossref]

2005 (2)

G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005).
[Crossref] [PubMed]

2003 (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” Phys. Cond. Matter. 15(37), 6345–6364 (2003).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1997 (1)

1996 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Auñón, J. M.

Borghi, R.

Botten, L. C.

Capasso, F.

A. Hayat, J. P. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Chan, C. T.

S. Wang and C. T. Chan, “Strong optical force acting on a dipolar particle over a multilayer substrate,” Opt. Express 24(3), 2235–2241 (2016).
[Crossref] [PubMed]

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Dogariu, A.

S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Dong, J. W.

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Frezza, F.

Gori, F.

Hayat, A.

A. Hayat, J. P. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Kajorndejnukul, V.

S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Lai, Y.

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

McPhedran, R. C.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[Crossref] [PubMed]

G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
[Crossref]

Milton, G. W.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[Crossref] [PubMed]

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 462(2074), 3027–3059 (2006).
[Crossref]

G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
[Crossref]

Mueller, J. P.

A. Hayat, J. P. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Naraghi, R. R.

S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Narimanov, E. E.

Nicorovici, N. A.

Nicorovici, N. A. P.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 462(2074), 3027–3059 (2006).
[Crossref]

G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
[Crossref]

Nieto-Vesperinas, M.

Pendry, J. B.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” Phys. Cond. Matter. 15(37), 6345–6364 (2003).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005).
[Crossref] [PubMed]

G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
[Crossref]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” Phys. Cond. Matter. 15(37), 6345–6364 (2003).
[Crossref]

Santarsiero, M.

Schettini, G.

Sukhov, S.

S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Wang, H. Z.

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Wang, S.

Wang, S. B.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

Zheng, H. H.

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

J. Opt. Soc. Am. A (3)

Nat. Commun. (1)

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

Nat. Photonics (1)

S. Sukhov, V. Kajorndejnukul, R. R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin–orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Cond. Matter. (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” Phys. Cond. Matter. 15(37), 6345–6364 (2003).
[Crossref]

Phys. Rev. B (1)

J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Hayat, J. P. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

G. W. Milton, N. A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 461(2064), 3999–4034 (2005).
[Crossref]

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 462(2074), 3027–3059 (2006).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic picture of the considered system. A cylinder of radius r 1 (orange solid circle) is placed at a distance d 1 on the left side of a slab (blue) with thickness d , permittivity ε s and permeability μ s . The wave vector of the incident plane wave is along x direction.
Fig. 2
Fig. 2 Normalized optical force F x / F 0 and the effective polarizability | α e / α | as a function of the particle-slab distance d 1 / d . F x and F 0 are the force along x direction with and without the slab. α is the bare polarizability of the particle in the absence of the slab, and α e is defined in the text. The solid line represents the analytical results obtained using dipole approximation and the circles denote full-wave calculation results using the Maxwell stress tensor approach. The dashed line represents effective polarizability of the cylinder. The slab has thickness d = λ and ε s = μ s = 1 + i δ , where λ = 2000 nm is the wavelength. The cylinder ( r 1 = 0.01 λ ) is made of metal with ε c = 2 , μ c = 1 for (a) and dielectric with ε c = 2 , μ c = 1 for (b).
Fig. 3
Fig. 3 Optical force acting on a metal cylinder ( ε c = 2 , μ c = 1 ) in front of a slab ( ε s = μ s = 1 + i 10 6 ) with different thicknesses. The other parameters are the same as in Fig. 2.
Fig. 4
Fig. 4 Normalized optical force (solid black line) acting on a metal cylinder ( ε c = 2 , μ c = 1 ) in front of a slab ( ε s = μ s = 1 + i δ ) with different values of absorption for fixed particle-slab distance d 1 / d = 0.3 . The red symbol line denotes the work needed to be done in order to move the cylinder from 0.01 d to 0.5 d away from the slab. We have normalized it to the work done for ordinary photon pressure without the superlens slab. The other parameters are the same as in Fig. 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P y = α E y loc = α ( E y inc + E 1 ref ) = α ( E y inc + P y G y y ref ) ,
P y = α 1 α G y y ref E y inc = α e E y inc ,
F x = | E y inc | 2 Re { α * [ i k 0 ( 1 α G y y ref ) + α x G y y ref ] } 2 | 1 α G y y ref | 2 ,
R ( k p ) = ( 1 η 2 ) ( e i k x ' d e i k x ' d ) ( 1 + η ) 2 e i k x ' d ( 1 η ) 2 e i k x ' d ,
R ( k p ) = i δ ( 1 + e 2 κ d ) k p 2 2 ( k p 2 k 0 2 ) δ 2 ( 1 + e 2 κ d ) k p 2 ( k p 2 3 k 0 2 ) 4 ( k p 2 k 0 2 ) 2 + Ο ( δ 3 )
F x = Re { α * [ i k 0 ( 1 ξ i ξ ' ) + ζ + i ζ ' ] } 2 ( 1 ξ ) 2 + 2 ξ ' 2 = ξ ' γ + γ 2 ξ ' 2 ( 1 2 γ ξ ' + γ 2 ξ ' 2 + ξ ' 2 ) Re [ α ] k 0 = 1 2 Im [ α e ] k 0 .
F x max = ( 1 + γ 2 ) 4 Re [ α ] k 0 = Re [ α ] 2 + Im [ α ] 2 4 Re [ α ] k 0 = | α | 2 k 0 4 Re [ α ] .
F x max F 0 = | α | 2 2 Im [ α ] Re [ α ] = 1 2 ( tan θ + 1 tan θ ) 1 ,

Metrics