Abstract

Active plasmonic band-stop filters based on single- and double-layer doped graphene metamaterials at the THz wavelengths are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. The metamaterial unit cell structure is composed of two parallel graphene nanoscale ribbons. Simulated results exhibit that significant resonance wavelength shifts can be achieved with a slight variation of the doping concentration of the graphene ribbons. Besides, the asymmetry double-layer graphene metamaterial device has two apparent filter dips while the symmetry single-, double-layer and asymmetry single-layer graphene metamaterial devices just only one. The metamaterials with symmetry single-layer and asymmetry double-layer graphene can be used as a high-sensitivity refractive sensor with the sensitivity up to 5100 nm/RIU and a two-circuit switch, respectively. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for THz applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multispectral plasmon induced transparency based on graphene metamaterials

Chen Sun, Jiangnan Si, Zhewei Dong, and Xiaoxu Deng
Opt. Express 24(11) 11466-11474 (2016)

THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide

Bin Zhang, Qiang Wu, Chongpei Pan, Ruobai Feng, Jingjun Xu, Cibo Lou, Xiaodong Wang, and Fuhua Yang
Opt. Express 23(12) 16042-16051 (2015)

Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial

Enduo Gao, Zhimin Liu, Hongjian Li, Hui Xu, Zhenbin Zhang, Xin Luo, Cuixiu Xiong, Chao Liu, Baihui Zhang, and Fengqi Zhou
Opt. Express 27(10) 13884-13894 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
    [Crossref]
  4. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  5. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
    [Crossref]
  6. W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics J. 1(2), 99–118 (2009).
    [Crossref]
  7. J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
    [Crossref] [PubMed]
  8. Z. Zhou, Y. Chen, and L. Feng, “Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method,” Meas. Sci. Technol. 26(11), 115001 (2015).
    [Crossref]
  9. Y. Kanamori, R. Hokari, and K. Hane, “MEMS for Plasmon Control of Optical Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 21(4), 137–146 (2015).
    [Crossref]
  10. N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
    [Crossref]
  11. R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  12. X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
    [Crossref]
  13. F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
    [Crossref] [PubMed]
  14. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  15. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91(3), 037401 (2003).
    [Crossref] [PubMed]
  16. N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref] [PubMed]
  17. S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
    [Crossref] [PubMed]
  18. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  19. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]
  20. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  21. C. How Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
    [Crossref]
  22. H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
    [Crossref]
  23. H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
    [Crossref]
  24. L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
    [Crossref] [PubMed]
  25. S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
    [Crossref]
  26. G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Prop. 56(3), 747–757 (2008).
    [Crossref]
  27. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  28. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
    [Crossref] [PubMed]
  29. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
    [Crossref]
  30. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  31. A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
    [Crossref]
  32. A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
    [Crossref] [PubMed]

2016 (3)

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
[Crossref]

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

2015 (5)

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Z. Zhou, Y. Chen, and L. Feng, “Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method,” Meas. Sci. Technol. 26(11), 115001 (2015).
[Crossref]

Y. Kanamori, R. Hokari, and K. Hane, “MEMS for Plasmon Control of Optical Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 21(4), 137–146 (2015).
[Crossref]

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

2014 (2)

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

2013 (3)

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

2012 (7)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

C. How Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

2011 (4)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

2010 (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2009 (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Prop. 56(3), 747–757 (2008).
[Crossref]

2007 (2)

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (2)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2003 (1)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91(3), 037401 (2003).
[Crossref] [PubMed]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

Al-Naib, I.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Amemiya, Y.

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
[Crossref]

Averitt, R. D.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Avouris, P.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Born, N.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chang, W.-S.

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, Y.

Z. Zhou, Y. Chen, and L. Feng, “Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method,” Meas. Sci. Technol. 26(11), 115001 (2015).
[Crossref]

Chowdhury, D. R.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Chu, H.-S.

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Cong, L.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Cumming, D. R. S.

de Abajo, F. J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Feng, L.

Z. Zhou, Y. Chen, and L. Feng, “Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method,” Meas. Sci. Technol. 26(11), 115001 (2015).
[Crossref]

Fernández Gavela, A.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Ferrari, A. C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gokkavas, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grajales García, D.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Grant, J.

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hane, K.

Y. Kanamori, R. Hokari, and K. Hane, “MEMS for Plasmon Control of Optical Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 21(4), 137–146 (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Prop. 56(3), 747–757 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

He, X.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Hokari, R.

Y. Kanamori, R. Hokari, and K. Hane, “MEMS for Plasmon Control of Optical Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 21(4), 137–146 (2015).
[Crossref]

Honzawa, K.

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

How Gan, C.

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

C. How Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

Huang, Z.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

Jansen, C.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

Jiang, J.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Jiang, X.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kafesaki, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Kanamori, Y.

Y. Kanamori, R. Hokari, and K. Hane, “MEMS for Plasmon Control of Optical Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 21(4), 137–146 (2015).
[Crossref]

Khatua, S.

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91(3), 037401 (2003).
[Crossref] [PubMed]

Koch, M.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

Koppens, F. H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Koschny, T.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Lechuga, L. M.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Li, H.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

Li, T.-y.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Li, X.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Li, Y.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lidorikis, E.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Lin, Q.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Link, S.

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Manceau, J.-M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Massaouti, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

McCrindle, I. J. H.

Meng, F.-y.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Moloney, J. V.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Olson, J.

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Ozbay, E.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pei, C.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Ramirez, J. C.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Sana, A. K.

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
[Crossref]

Scheller, M.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shadrivov, I. V.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91(3), 037401 (2003).
[Crossref] [PubMed]

Shen, A.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Shen, N.-H.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Singh, R.

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soukoulis, C. M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Sun, B.

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

Swanglap, P.

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

Tao, H.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Tzortzakis, S.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, J.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Wang, L.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

Wang, S.

Williams, G. P.

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

Wu, Q.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xia, F.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xia, S.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Yang, G.

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Yang, J.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Yang, L.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Yokoyama, S.

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
[Crossref]

Yu, H.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhai, X.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

Zhang, F.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Zhao, C.

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Zhao, Q.

Zharov, A. A.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91(3), 037401 (2003).
[Crossref] [PubMed]

Zhou, J.

Zhou, Z.

Z. Zhou, Y. Chen, and L. Feng, “Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method,” Meas. Sci. Technol. 26(11), 115001 (2015).
[Crossref]

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Nano (1)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, “Terahertz Metamaterials with Ultrahigh Angular Sensitivity,” Adv. Opt. Mater. 3(5), 642–645 (2015).
[Crossref]

Appl. Phys. Lett. (3)

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

C. How Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

Europhys. Lett. (1)

H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, and X. Li, “Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system,” Europhys. Lett. 104(3), 37001 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Kanamori, R. Hokari, and K. Hane, “MEMS for Plasmon Control of Optical Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 21(4), 137–146 (2015).
[Crossref]

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

IEEE Photonics J. (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

IEEE Trans. Antennas Prop. (1)

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Prop. 56(3), 747–757 (2008).
[Crossref]

J. Appl. Phys. (1)

X. He, T.-y. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F.-y. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, “Silicon photonic crystal resonators for label free biosensor,” Jpn. J. Appl. Phys. 55(4S), 04EM11 (2016).
[Crossref]

Meas. Sci. Technol. (1)

Z. Zhou, Y. Chen, and L. Feng, “Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method,” Meas. Sci. Technol. 26(11), 115001 (2015).
[Crossref]

Nano Lett. (2)

S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active Modulation of Nanorod Plasmons,” Nano Lett. 11(9), 3797–3802 (2011).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (2)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Phys. Rev. Lett. (2)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91(3), 037401 (2003).
[Crossref] [PubMed]

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Sci. Rep. (1)

L. Yang, C. Pei, A. Shen, C. Zhao, Y. Li, X. Li, H. Yu, Y. Li, X. Jiang, and J. Yang, “An all-optical modulation method in sub-micron scale,” Sci. Rep. 5, 9206 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The conceptual schematic of the designed graphene metamaterial. (b) Schematic of metamaterial unit cell structure consisting of two mutual parallel symmetry graphene sheets, the geometrical dimensions are as follows: a = b = 800nm, c = 550nm, d = 125nm, e = 120nm, h = 200nm. (c), (d) The transmission spectra with different chemical potential ranging from 0.48ev to 0.6ev for single-layer graphene ribbons and double-layer graphene ribbons, respectively.
Fig. 2
Fig. 2 (a) Schematic of metamaterial unit cell structure consisting of two mutual parallel asymmetry graphene sheets, the geometrical dimensions are as follows: g = 450nm, the other geometrical parameters are as same as in Fig. 1(b). (b), (c) The transmission spectra with different chemical potential ranging from 0.48ev to 0.6ev for single-layer graphene ribbons and double-layer graphene ribbons, respectively. (d) and (e) The transmission spectra while the displacement is 20nm and 120nm, respectively, all other parameters are as same as in Fig. 1(b). (f) and (g) The transmission spectra of metamaterials which unit cell structure is just composed of long ribbons and short ribbons,respectively at 0.6ev.
Fig. 3
Fig. 3 (a) Simulated transmittance spectra of the metamaterial with refractive index ranging from 1 to 1.1, the geometrical parameters are as same as in Fig. 1(b). (b) The peak wavelength with different refractive index.
Fig. 4
Fig. 4 The transmission spectra at different four states: (a) with 0.62ev and 0.62ev, respectively, (b) with 0.32ev and 0.62ev, respectively, (c) with 0.62ev and 0ev, respectively, (d) with 0.32ev and 0ev, respectively.

Tables (1)

Tables Icon

Table 1 Four states of the two-circuit switch and different Chemical potential

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ(ω,Γ, μ c ,T)= σ inter (ω,Γ, μ c ,T)+ σ intra (ω,Γ, μ c ,T)
σ intra (ω,Γ, μ c ,T)= i e 2 π 2 (ω+i2Γ) 0 ξ( f d (ξ) ξ f d (ξ) ξ ) dξ
σ inter (ω,Γ, μ c ,T)= i e 2 (ω+i2ωΓ) π 2 0 ξ( f d (ξ) (ω+i2Γ) 2 f d (ξ) 4 (ξ/ ) 2 ) dξ
f d (ξ)= 1 exp( (ξ μ c ) / ( k B T) )+1

Metrics