Abstract

Inherent absorptive losses affect the performance of all plasmonic devices, limiting their fascinating applications in the visible range. Here, we report on the enhanced optical transparency obtained as a result of the broadband mitigation of optical losses in nanocomposite polymeric films, embedding core-shell quantum dots (CdSe@ZnS QDs) and gold nanoparticles (Au-NPs). Exciton-plasmon coupling enables non-radiative energy transfer processes from QDs to metal NPs, resulting in gain induced transparency of the hybrid flexible systems. Experimental evidences, such as fluorescence quenching and modifications of fluorescence lifetimes confirm the presence of this strong coupling between plexcitonic elements. Measures performed by means of an ultra-fast broadband pump-probe setup demonstrate loss compensation of gold NPs dispersed in plastic network in presence of gain. Furthermore, we compare two films containing different concentrations of gold NPs and same amount of QDs, to investigate the role of acceptor concentration (Au-NPs) in order to promote an effective and efficient energy transfer mechanism. Gain induced transparency in bulk systems represents a promising path towards the realization of loss compensated plasmonic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear energy transfer in quantum dot and metallic nanorod nanocomposites

Mahi R. Singh and Chris Racknor
J. Opt. Soc. Am. B 32(10) 2216-2222 (2015)

Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects

Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang
Opt. Express 18(7) 6516-6521 (2010)

Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials

Ali Panahpour, Yaser Silani, Marzieh Farrokhian, Andrei V. Lavrinenko, and Hamid Latifi
J. Opt. Soc. Am. B 29(9) 2297-2308 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [Crossref] [PubMed]
  2. H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
    [Crossref]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
    [Crossref] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
    [Crossref]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  7. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [Crossref] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  9. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [Crossref] [PubMed]
  10. S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: Sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2013).
    [Crossref]
  11. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
    [Crossref] [PubMed]
  12. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [Crossref] [PubMed]
  13. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  14. E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
    [Crossref] [PubMed]
  15. D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
    [Crossref] [PubMed]
  16. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [Crossref] [PubMed]
  17. A. Balazs, T. Emrick, and T. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science 314, 1107 (2006).
    [Crossref] [PubMed]
  18. Q. Wang and D. Seo, “Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots,” J. Mater. Sci. 44, 816–820 (2009).
    [Crossref]
  19. I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).
  20. Y. Liu and X. Zhang, “Metamaterials: A new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
    [Crossref] [PubMed]
  21. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: An introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
    [Crossref]
  22. C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
    [Crossref] [PubMed]
  23. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
    [Crossref] [PubMed]
  24. M. I. Stockman, “Spaser action loss compensation and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
    [Crossref]
  25. A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
    [Crossref] [PubMed]
  26. A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
    [Crossref]
  27. A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
    [Crossref]
  28. M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
    [Crossref]
  29. G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
    [Crossref]
  30. H. Hiramatsu and F. E. Osterloh, “A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants,” Chem. Mater. 16, 2509–2511 (2004).
    [Crossref]
  31. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002).
    [Crossref] [PubMed]
  32. S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
    [Crossref] [PubMed]
  33. J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
    [Crossref] [PubMed]
  34. D. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold-polysiloxane elastomeric nanocomposites,” Adv. Mater. 18, 1653–1656 (2006).
    [Crossref]
  35. A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
    [Crossref] [PubMed]
  36. V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
    [Crossref]
  37. A. Albanese and W. C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity,” ACS Nano 5, 5478–5489 (2011).
    [Crossref] [PubMed]
  38. B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
    [Crossref] [PubMed]
  39. N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
    [Crossref]
  40. V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic dicke effect,” Phys. Rev. Lett. 102, 077401 (2009).
    [Crossref] [PubMed]
  41. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
    [Crossref] [PubMed]
  42. K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci Rep 3, 3291 (2013).
    [Crossref] [PubMed]
  43. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
    [Crossref] [PubMed]

2014 (2)

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

2013 (3)

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: Sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2013).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci Rep 3, 3291 (2013).
[Crossref] [PubMed]

2012 (7)

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

2011 (9)

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

A. Albanese and W. C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity,” ACS Nano 5, 5478–5489 (2011).
[Crossref] [PubMed]

S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
[Crossref] [PubMed]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

M. I. Stockman, “Spaser action loss compensation and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
[Crossref]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metamaterials: A new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[Crossref] [PubMed]

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

2010 (2)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

2009 (5)

Q. Wang and D. Seo, “Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots,” J. Mater. Sci. 44, 816–820 (2009).
[Crossref]

J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
[Crossref] [PubMed]

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic dicke effect,” Phys. Rev. Lett. 102, 077401 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

2008 (2)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2006 (7)

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: An introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[Crossref]

A. Balazs, T. Emrick, and T. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science 314, 1107 (2006).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

D. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold-polysiloxane elastomeric nanocomposites,” Adv. Mater. 18, 1653–1656 (2006).
[Crossref]

2005 (1)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

2004 (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

H. Hiramatsu and F. E. Osterloh, “A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants,” Chem. Mater. 16, 2509–2511 (2004).
[Crossref]

2002 (1)

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1992 (1)

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Albanese, A.

A. Albanese and W. C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity,” ACS Nano 5, 5478–5489 (2011).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Aouadi, S.

J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
[Crossref] [PubMed]

Aradian, A.

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

Ariga, K.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Balazs, A.

A. Balazs, T. Emrick, and T. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science 314, 1107 (2006).
[Crossref] [PubMed]

Bar-Joseph, I.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

Barois, P.

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Bartolino, R.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Bryant, G. W.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Caseri, W.

D. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold-polysiloxane elastomeric nanocomposites,” Adv. Mater. 18, 1653–1656 (2006).
[Crossref]

Chan, W. C.

A. Albanese and W. C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity,” ACS Nano 5, 5478–5489 (2011).
[Crossref] [PubMed]

Chegel, V.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Chen, H.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Cohen-Hoshen, E.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

Correa-Duarte, M. A.

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

Coutant, C.

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

Couzis, A.

S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
[Crossref] [PubMed]

Curri, M. L.

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

De Luca, A.

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci Rep 3, 3291 (2013).
[Crossref] [PubMed]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

Deda, M. L.

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

Demir, H.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Depalo, N.

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Dhama, R.

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Emrick, T.

A. Balazs, T. Emrick, and T. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science 314, 1107 (2006).
[Crossref] [PubMed]

Fanizza, E.

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Ferrie, M.

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

G. d. Abajo, F. J.

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Goettmann, F.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: An introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[Crossref]

Govorov, A. O.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Gray, S. K.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Grzelczak, M. P.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

Hill, J. P.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Hiramatsu, H.

H. Hiramatsu and F. E. Osterloh, “A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants,” Chem. Mater. 16, 2509–2511 (2004).
[Crossref]

Hohenau, A.

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

Huan, C. H. A.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Infusino, M.

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

Ishihara, S.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Ishii, S.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: Sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2013).
[Crossref]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Ji, Y.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Kickelbick, G.

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).

Kildishev, A. V.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: Sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2013).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Kim, S.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kohli, P.

J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
[Crossref] [PubMed]

Köstler, S.

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Krenn, J. R.

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

La Deda, M.

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Leitner, A.

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

Li, X.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Lin, H.-Q.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Liu, X.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: A new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[Crossref] [PubMed]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

Liz-Marzán, L. M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).

Lopatynskyi, A.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Ma, R.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref] [PubMed]

Maldarelli, C.

S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
[Crossref] [PubMed]

Manjavacas, A.

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Moores, A.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: An introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[Crossref]

Morris, J. F.

S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
[Crossref] [PubMed]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Nemoto, Y.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Nordlander, P.

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

Osterloh, F. E.

H. Hiramatsu and F. E. Osterloh, “A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants,” Chem. Mater. 16, 2509–2511 (2004).
[Crossref]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Pastoriza-Santos, I.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Peng, B.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Peng, X.

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002).
[Crossref] [PubMed]

Pérez-Juste, J.

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).

Pinkas, I.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

Pustovit, V. N.

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic dicke effect,” Phys. Rev. Lett. 102, 077401 (2009).
[Crossref] [PubMed]

Qu, L.

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002).
[Crossref] [PubMed]

Rachkov, O.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Rahimi Rashed, A.

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

Rashed, A. R.

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

Ratchford, D.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Ravaine, S.

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

Reitinger, N.

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

Rempe, G.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Russell, T.

A. Balazs, T. Emrick, and T. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science 314, 1107 (2006).
[Crossref] [PubMed]

Scaramuzza, N.

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Seo, D.

Q. Wang and D. Seo, “Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots,” J. Mater. Sci. 44, 816–820 (2009).
[Crossref]

Shafiei, F.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shahbazyan, T. V.

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic dicke effect,” Phys. Rev. Lett. 102, 077401 (2009).
[Crossref] [PubMed]

Shalaev, V. M.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: Sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2013).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Shojaei-Zadeh, S.

S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
[Crossref] [PubMed]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Smith, P.

D. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold-polysiloxane elastomeric nanocomposites,” Adv. Mater. 18, 1653–1656 (2006).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

Sperling, J.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci Rep 3, 3291 (2013).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Spaser action loss compensation and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Strangi, G.

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci Rep 3, 3291 (2013).
[Crossref] [PubMed]

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

Striccoli, M.

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

Sum, T. C.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Thompson, R. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

Uhlenhaut, D.

D. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold-polysiloxane elastomeric nanocomposites,” Adv. Mater. 18, 1653–1656 (2006).
[Crossref]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Vázquez-Vázquez, C.

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

Veltri, A.

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

Wang, J.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Wang, Q.

Q. Wang and D. Seo, “Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots,” J. Mater. Sci. 44, 816–820 (2009).
[Crossref]

Weaver, J.

J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Woo, K. C.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Xiong, Q.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Yanchuk, I.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Zakeri, R.

J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, Q.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

Zhang, W.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: A new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

ACS Nano (3)

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. L. Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: A multipronged approach to mitigate optical losses,” ACS Nano 5, 5823–5829 (2011).
[Crossref] [PubMed]

A. Albanese and W. C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity,” ACS Nano 5, 5478–5489 (2011).
[Crossref] [PubMed]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation,” ACS Nano 6 (7), 6250–6259 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

M. Infusino, A. De Luca, A. Veltri, C. Vázquez-Vázquez, M. A. Correa-Duarte, R. Dhama, and G. Strangi, “Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules,” ACS Photonics 1, 371–376 (2014).
[Crossref]

Adv. Mater. (1)

D. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold-polysiloxane elastomeric nanocomposites,” Adv. Mater. 18, 1653–1656 (2006).
[Crossref]

Appl. Phys. Lett. (2)

A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104, 103103 (2014).
[Crossref]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98, 251912 (2011).
[Crossref]

Chem. Mater. (1)

H. Hiramatsu and F. E. Osterloh, “A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants,” Chem. Mater. 16, 2509–2511 (2004).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: A new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

S. Shojaei-Zadeh, J. F. Morris, A. Couzis, and C. Maldarelli, “Highly crosslinked poly (dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals,” J. Colloid Interface Sci. 363, 25 (2011).
[Crossref] [PubMed]

J. Mater. Chem. (2)

J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli, “Synthesis and characterization of quantum dot-polymer composites,” J. Mater. Chem. 19, 3198–3206 (2009).
[Crossref] [PubMed]

A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. Rahimi Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core-shell nanoparticles: The way to selectively compensate absorptive losses,” J. Mater. Chem. 22, 8846–8852 (2012).
[Crossref]

J. Mater. Sci. (1)

Q. Wang and D. Seo, “Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots,” J. Mater. Sci. 44, 816–820 (2009).
[Crossref]

J. Nanosci. Nanotechnol. (1)

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active polydimethylsiloxane elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 414–420 (2006).

J. Phys. Chem. C (1)

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

J. Phys. Chem. C. (1)

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, “Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate,” J. Phys. Chem. C. 116, 2683–2690 (2012).
[Crossref]

Nano Lett. (5)

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[Crossref]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: Sieving single modes with proper phases,” Nano Lett. 13, 159–163 (2013).
[Crossref]

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12, 4260–4264 (2012).
[Crossref] [PubMed]

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Nanoscale (1)

A. De Luca, N. Depalo, E. Fanizza, M. Striccoli, M. L. Curri, M. Infusino, A. R. Rashed, M. L. Deda, and G. Strangi, “Plasmon mediated super-absorber flexible nanocomposite for metamaterials,” Nanoscale 5, 6097 (2013).
[Crossref] [PubMed]

Nat. Mater. (3)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

Nature (5)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

New J. Chem. (1)

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: An introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (5)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[Crossref] [PubMed]

M. I. Stockman, “Spaser action loss compensation and stability in plasmonic systems with gain,” Phys. Rev. Lett. 106, 156802 (2011).
[Crossref]

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic dicke effect,” Phys. Rev. Lett. 102, 077401 (2009).
[Crossref] [PubMed]

Phys. Status Solidi A-Appl. Res. (1)

N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A-Appl. Res. 208, 710–714 (2011).
[Crossref]

Sci Rep (1)

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci Rep 3, 3291 (2013).
[Crossref] [PubMed]

Science (3)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

A. Balazs, T. Emrick, and T. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science 314, 1107 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Images of the reference and main samples. Reference samples (A) pure PDMS film, (B) low (1 × 10−6 M) and (C) high (3 × 10−6 M) concentrated Au-NPs PDMS film and (D) QDs-PDMS film (QDs concentration = 6 × 10−5 M). Main samples E and F: Dispersion of same concentration of QDs with low and high concentrated Au-NPs in PDMS matrix, respectively. Plasmon bands of samples E (brown circles) and F (black squares) and fluorescence emission spectrum of sample F (red line). Light blue background represents spectral overlapping region. Microscope images of sample C, E and F have been acquired by a 50x objective to show the uniform distribution of Au NPs and QDs aggregates of different size (C-50x, E-50x and F-50x). Scale bar measures 20μm.
Fig. 2
Fig. 2 (a) An ultrafast optical set-up designed for steady state fluorescence measures, time resolved spectroscopy and broadband pump-probe experiments. (b) Maxima of fluorescence emission (FE) intensity of sample E (blue circles) and sample F (red triangles) with respect to sample D (black squares) as a function of the incident pump energy. Inset shows the quenching of emission spectra of QDs in the presence of Au-NPs in sample E (blue line) and F (red line) with respect to sample D (black line).
Fig. 3
Fig. 3 (a) Time-resolved fluorescence intensity decays for sample D (black curve), sample E (blue) and F (red). Inset represents a zoom of the first 32 ns. (b) Shortened fast decay time τ1 in sample F with respect to sample E at different emission wavelengths. Light blue background represents spectral overlapping region between plasmon bands of Au NPs and fluorescence emission of QDs.
Fig. 4
Fig. 4 Particular wavelength cuts extracted from broadband ΔT of sample E in the spectral overlapping region of plasmon resonances and QDs emission as a function of pump power, when pumped by excitation wavelength λexc = 400nm. Inset shows the Delta scattering experiment as a function of spectral overlapping region wavelength for sample E.
Fig. 5
Fig. 5 (a) Particular wavelength cuts extracted from broadband ΔT of sample F, approaching towards the maximum transparency, attained at 545 nm in the spectral overlapping region as a function of pump power. Inset shows decrease in ΔT for sample F, when probe wavelengths move towards the end of overlapping region. (b) Comparison of ΔT (pump power = 80 mW) for samples E and F as a function of probe wavelengths. Blue background represents the spectral overlapping region, evidencing the enhanced broadband optical transparency in sample F with respect to sample E.
Fig. 6
Fig. 6 Delta transmission (ΔT) of reference samples for two extreme pump powers (20 mW & 80 mW) as the function of the spectral overlapping region (500–600 nm), when excited by excitation wavelength λexc = 400nm. (a) Sample A, (b) sample B, (c) sample C, (d) sample D. Black and red lines represent the responses of probe beam at 20 mW and 80 mW pump power, respectively.

Tables (1)

Tables Icon

Table 1 Decay lifetime for sample D, E and F in ns at emission wavelength 560 nm.

Metrics