Abstract

In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field

Peng Zhang, Ming Tang, Feng Gao, Benpeng Zhu, Songnian Fu, Jun Ouyang, Perry Ping Shum, and Deming Liu
Opt. Express 22(16) 19581-19588 (2014)

Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu
Appl. Opt. 51(8) 1033-1036 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Fang, K. K. Chin, R. Qu, and H. Cai, Fundamentals of Optical Fiber Sensors (John Wiley and Sons, 2012).
  2. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).
  3. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
    [Crossref]
  4. M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
    [Crossref] [PubMed]
  5. J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on Fresnel reflection modulated by Fabry-Perot interference,” J. Lightwave Technol. 28(19), 2799–2803 (2010).
    [Crossref]
  6. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor Actuat. A-Phys. 138, 248–260 (2007).
  7. E. Li, G.-D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
    [Crossref]
  8. M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
    [Crossref] [PubMed]
  9. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  10. Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” in Atomic, Molecular and Optical Physics, L.T. Chen, eds. (Nova Science Publishers, 2008), pp. 235–260.
  11. M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sens. 2(1), 14–28 (2012).
    [Crossref]
  12. N. Tanaka, Y. Okabe, and N. Takeda, “Temperature –compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates,” Smart Mater. Struct. 12(6), 940–946 (2003).
    [Crossref]
  13. J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
    [Crossref]
  14. H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).
  15. C. J. Pacheco and A. C. Bruno, “A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement,” Sensors (Basel) 13(9), 11476–11489 (2013).
    [Crossref] [PubMed]
  16. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).
  17. D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett. 37(11), 2046–2048 (2012).
    [Crossref] [PubMed]
  18. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  19. Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  20. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  21. S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
    [Crossref] [PubMed]
  22. R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
    [Crossref]
  23. Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
    [Crossref]
  24. P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, Z. Zhao, H. Wei, J. Li, P. P. Shum, and D. Liu, “An ultra-sensitive magnetic field sensor based on extrinsic fiber-optic Fabry–Perot interferometer and terfenol-D,” J. Lightwave Technol. 33(15), 3332–3337 (2015).
    [Crossref]
  25. S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett. 103(11), 111907 (2013).
    [Crossref]
  26. K. D. Oh, A. Wang, and R. O. Claus, “Fiber-optic extrinsic Fabry-Perot dc magnetic field sensor,” Opt. Lett. 29(18), 2115–2117 (2004).
    [Crossref] [PubMed]
  27. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In line fiber étalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
    [PubMed]
  28. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref] [PubMed]
  29. Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
    [Crossref] [PubMed]
  30. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
    [Crossref] [PubMed]
  31. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]
  32. C. J. Pacheco and A. C. Bruno, “The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors,” Meas. Sci. Technol. 21(6), 065205 (2010).
    [Crossref]
  33. M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
    [Crossref]

2015 (3)

2014 (5)

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

2013 (3)

C. J. Pacheco and A. C. Bruno, “A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement,” Sensors (Basel) 13(9), 11476–11489 (2013).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
[Crossref] [PubMed]

S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett. 103(11), 111907 (2013).
[Crossref]

2012 (4)

2011 (2)

2010 (2)

2009 (1)

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

2008 (1)

E. Li, G.-D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

2007 (2)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor Actuat. A-Phys. 138, 248–260 (2007).

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

2004 (1)

2003 (1)

N. Tanaka, Y. Okabe, and N. Takeda, “Temperature –compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates,” Smart Mater. Struct. 12(6), 940–946 (2003).
[Crossref]

2000 (1)

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
[Crossref]

1997 (1)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

1993 (1)

1991 (1)

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Ahmad, H.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Aichele, C.

Ali, M. M.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Andrés, M. V.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
[Crossref]

Araujo, L.

Aref, S. H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor Actuat. A-Phys. 138, 248–260 (2007).

Baptista, J. M.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Berkoff, T. A.

Bierlich, J.

Bouwmans, G.

Braga, A. M.

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

Brennan, D. D.

Bruno, A. C.

C. J. Pacheco and A. C. Bruno, “A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement,” Sensors (Basel) 13(9), 11476–11489 (2013).
[Crossref] [PubMed]

C. J. Pacheco and A. C. Bruno, “The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors,” Meas. Sci. Technol. 21(6), 065205 (2010).
[Crossref]

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

Carvalho, H. R.

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

Caspary, M. C.

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

Chen, J.-H.

Clark, A. E.

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Claus, R. O.

Cruz, J. L.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
[Crossref]

Dai, J.

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sens. 2(1), 14–28 (2012).
[Crossref]

Díez, A.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
[Crossref]

Ding, X.

E. Li, G.-D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Dong, S.

S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett. 103(11), 111907 (2013).
[Crossref]

Farahi, F.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Favero, F. C.

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor Actuat. A-Phys. 138, 248–260 (2007).

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Friebele, E. J.

Fu, H. Y.

Fu, S.

Gao, F.

Guan, B.-O.

He, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

He, W.-X.

Hu, T.

Huang, J.

S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett. 103(11), 111907 (2013).
[Crossref]

Huang, X.-G.

Islam, M. R.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Jia, P. G.

Kersey, A. D.

Kobelke, J.

Lai, M.-H.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Latifi, H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

Li, E.

E. Li, G.-D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Li, J.

Li, Z.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Liao, C.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Lim, K.-S.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Linberg, J.

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Liu, D.

Liu, S.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Liu, Z.

Lv, R.-Q.

R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor Actuat. A-Phys. 138, 248–260 (2007).

McLaughli, E. A.

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Moffett, M. B.

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Mora, J.

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
[Crossref]

Oh, K. D.

Okabe, Y.

N. Tanaka, Y. Okabe, and N. Takeda, “Temperature –compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates,” Smart Mater. Struct. 12(6), 940–946 (2003).
[Crossref]

Ouyang, J.

Pacheco, C. J.

C. J. Pacheco and A. C. Bruno, “A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement,” Sensors (Basel) 13(9), 11476–11489 (2013).
[Crossref] [PubMed]

C. J. Pacheco and A. C. Bruno, “The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors,” Meas. Sci. Technol. 21(6), 065205 (2010).
[Crossref]

Peng, G.-D.

E. Li, G.-D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Pruneri, V.

Pu, S.

S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett. 103(11), 111907 (2013).
[Crossref]

Putman, M. A.

Qin, B.

Qu, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

Qureshi, K. K.

Rao, Y.-J.

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Roriz, P.

Santos, J. L.

Schuster, K.

Shum, P. P.

Sirkis, J. S.

Sun, B.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

Takeda, N.

N. Tanaka, Y. Okabe, and N. Takeda, “Temperature –compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates,” Smart Mater. Struct. 12(6), 940–946 (2003).
[Crossref]

Tam, H. Y.

Tanaka, N.

N. Tanaka, Y. Okabe, and N. Takeda, “Temperature –compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates,” Smart Mater. Struct. 12(6), 940–946 (2003).
[Crossref]

Tang, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Tang, M.

Teter, J. P.

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Triques, A. L. C.

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

Valente, L. C. G.

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

Villatoro, J.

Wang, A.

Wang, C.

Wang, D.

R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Wang, D. H.

Wang, D. N.

Wang, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Wang, Q.

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Wang, S. J.

Wang, Y.

Wei, H.

Wondraczek, K.

Wu, C.

Wun-Fogle, M.

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

Yang, J.

Yang, K.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Yang, M.

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sens. 2(1), 14–28 (2012).
[Crossref]

Yin, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

Yuan, L.

Zhang, P.

Zhang, Y.

Zhao, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Zhao, J.-R.

Zhao, Y.

R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Zhao, Z.

Zhong, X.

Zhou, A.

Zhou, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Zhu, B.

Zhu, Z.

Appl. Phys. Lett. (2)

E. Li, G.-D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett. 103(11), 111907 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

R.-Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry-Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photonics Technol. Lett. 21(17), 1229–1231 (2009).
[Crossref]

J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-currents and temperature discrimination,” IEEE Photonics Technol. Lett. 12(12), 1680–1682 (2000).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry–Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

J. Acoust. Soc. Am. (1)

M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughli, “Characterization of Terfenol-D for magnetostrictive transducers,” J. Acoust. Soc. Am. 89(3), 1448–1455 (1991).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (2)

C. J. Pacheco and A. C. Bruno, “The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors,” Meas. Sci. Technol. 21(6), 065205 (2010).
[Crossref]

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
[Crossref] [PubMed]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett. 37(11), 2046–2048 (2012).
[Crossref] [PubMed]

K. D. Oh, A. Wang, and R. O. Claus, “Fiber-optic extrinsic Fabry-Perot dc magnetic field sensor,” Opt. Lett. 29(18), 2115–2117 (2004).
[Crossref] [PubMed]

J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In line fiber étalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
[PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref] [PubMed]

Photonic Sens. (1)

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sens. 2(1), 14–28 (2012).
[Crossref]

Sci. Rep. (1)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(7624), 7624 (2015).
[Crossref] [PubMed]

Sensor Actuat. A-Phys. (2)

H. R. Carvalho, A. C. Bruno, A. M. Braga, L. C. G. Valente, A. L. C. Triques, and M. C. Caspary, “Remote magnetostrictive position sensors interrogated by fiber Bragg gratings,” Sensor Actuat. A-Phys. 135, 141–145 (2007).

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor Actuat. A-Phys. 138, 248–260 (2007).

Sensors (Basel) (2)

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

C. J. Pacheco and A. C. Bruno, “A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement,” Sensors (Basel) 13(9), 11476–11489 (2013).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

N. Tanaka, Y. Okabe, and N. Takeda, “Temperature –compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates,” Smart Mater. Struct. 12(6), 940–946 (2003).
[Crossref]

Other (4)

Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” in Atomic, Molecular and Optical Physics, L.T. Chen, eds. (Nova Science Publishers, 2008), pp. 235–260.

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Z. Fang, K. K. Chin, R. Qu, and H. Cai, Fundamentals of Optical Fiber Sensors (John Wiley and Sons, 2012).

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Air-cavities of length of (a) 25 µm and (b) 200 µm (microscope image). (c) Back-reflected signal for an in-fiber FPI formed by an air-cavity of 60 µm. (d) Back-reflected signal for an in-fiber FPI of air-cavity of 25 µm shifting with applied longitudinal strain.
Fig. 2
Fig. 2 (a) Wavelength shift as a function of temperature for an FPI of air-cavity length equal to L = 25 μm ( λ 0 C ) and for a typical FBG (ΔλB). (b) Longitudinal strain applied to the in-fiber FPI: wavelength shift ( λ 0 C ) as a function of applied strain for air-cavities with length equal to 25 µm, 55 µm and 150 µm.
Fig. 3
Fig. 3 (a) Schematic of the magnetostrictive sensor built with the FPI. (b) Photograph of TX with the FBG and FPI attached. (c) Wavelength shift as a function of magnetic field applied for an FPI ( λ 0 C ) and an FBG (ΔλB) attached to a TX sample of size 4mm x 4mm x 20mm.
Fig. 4
Fig. 4 (a) Schematic of the magnetic force sensor built with the in-fiber FPI. (b) Photograph of the sensor. (c) Wavelength shift as a function of distance from a ferromagnetic plate for the magnetic force sensor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FSR = ( λ 0 C ) 2 /2nL
Δ λ 0 C =( βε+αΔT ) λ 0 C

Metrics