Abstract

We demonstrate a widely tunable, mode-locked fiber laser capable of producing sub-picosecond pulses between 1705 and 1805 nm. The 100 nm tuning range is achieved by using intracavity acousto-optic tunable filter. The laser delivers highly stable pulses via self-starting hybrid mode-locking triggered by frequency-shifting and nonlinear polarization evolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser

Ruihong Dai, Yafei Meng, Yao Li, Jiarong Qin, Shining Zhu, and Fengqiu Wang
Opt. Express 27(3) 3518-3527 (2019)

All-fiber passively mode-locked thulium/holmium laser with two center wavelengths

Rajesh Kadel and Brian R. Washburn
Appl. Opt. 51(27) 6465-6470 (2012)

1867–2010 nm tunable femtosecond thulium-doped all-fiber laser

Biao Sun, Jiaqi Luo, Zhiyu Yan, Kun Liu, Junhua Ji, Ying Zhang, Qi Jie Wang, and Xia Yu
Opt. Express 25(8) 8997-9002 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
    [Crossref] [PubMed]
  3. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
    [Crossref] [PubMed]
  4. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  5. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5(3), 932–943 (2014).
    [Crossref] [PubMed]
  6. P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
    [Crossref]
  7. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [Crossref] [PubMed]
  8. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref] [PubMed]
  9. P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band,” Opt. Lett. 39(12), 3650–3653 (2014).
    [Crossref] [PubMed]
  10. Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
    [Crossref] [PubMed]
  11. S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, and E. Dianov, “Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm,” Opt. Lett. 39(24), 6927–6930 (2014).
    [Crossref] [PubMed]
  12. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm,” Opt. Lett. 40(18), 4360–4363 (2015).
    [Crossref] [PubMed]
  13. T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
    [Crossref] [PubMed]
  14. S. U. Alam and A. B. Grudinin, “Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm,” IEEE Photonics Technol. Lett. 16(9), 2012–2014 (2004).
    [Crossref]
  15. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]

2016 (2)

2015 (2)

2014 (3)

2012 (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2010 (1)

2008 (1)

2006 (2)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[Crossref] [PubMed]

2004 (2)

P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

S. U. Alam and A. B. Grudinin, “Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm,” IEEE Photonics Technol. Lett. 16(9), 2012–2014 (2004).
[Crossref]

Agger, S. D.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Alam, S. U.

Alyshev, S.

Alyshev, S. V.

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Aramaki, M.

Austin, E. A. D.

P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Baravets, Y.

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Chambers, P.

P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Chernov, A. I.

Clarkson, W. A.

Dakin, J. P.

P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Daniel, J. M. O.

Dianov, E.

Dianov, E. M.

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Firstov, S.

Firstov, S. V.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Grudinin, A. B.

S. U. Alam and A. B. Grudinin, “Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm,” IEEE Photonics Technol. Lett. 16(9), 2012–2014 (2004).
[Crossref]

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Heidt, A. M.

Honzatko, P.

Ibsen, M.

Ishida, S.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jain, D.

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Jung, Y.

Kadwani, P.

Kasik, I.

Kataura, H.

Kawagoe, H.

Konov, V. I.

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Li, Z.

Lobach, A. S.

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

McComb, T. S.

Medvedkov, O. I.

Melkumov, M.

Melkumov, M. A.

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Nishizawa, N.

Noronen, T.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref] [PubMed]

Obraztsova, E. D.

Okhotnikov, O. G.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref] [PubMed]

Omoda, E.

Podrazky, O.

Povlsen, J. H.

Richardson, D. J.

Richardson, M.

Riumkin, K.

Riumkin, K. E.

Sahu, J. K.

Sakakibara, Y.

Shah, L.

Shardlow, P. C.

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Shubin, A.

Simakov, N.

Sims, R. A.

Solodyankin, M. A.

Sudesh, V.

Tausenev, A. V.

Tokurakawa, M.

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Willis, C. C. C.

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (1)

S. U. Alam and A. B. Grudinin, “Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm,” IEEE Photonics Technol. Lett. 16(9), 2012–2014 (2004).
[Crossref]

Lasers Surg. Med. (1)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Nat. Photonics (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Sci. Rep. (1)

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-locked bismuth fiber laser,” Sci. Rep. 6, 24876 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The normalized intensity of the amplified spontaneous emission of the Tm-Ho gain fiber. The laser tuning range is underlined by the section with red inclined line. (b) The schematic of the Tm-Ho mode-locked fiber laser cavity. AOTF – acousto-optic tunable filter, PC – polarization controller, WDM – wavelength-division multiplexer.
Fig. 2
Fig. 2 The spectra at different wavelengths. The tuning range of 100 nm was achieved in mode-locked regime.
Fig. 3
Fig. 3 (a) The spectrum and (b) the autocorrelation of the shortest pulse obtained at 1735 nm. The pulse duration was 630 fs using sech2 fitting.
Fig. 4
Fig. 4 (a) The mode-locking threshold level at different wavelengths. (b) The output power at different wavelengths. The pump power level was 2.7 W, which ensured the operation well above the threshold and in harmonic mode-locked regime throughout the whole tuning range. The repetition rate varied between 232.6 and 554.6 MHz depending on the polarization state, corresponding to 8th–19th harmonics.
Fig. 5
Fig. 5 (a) The measured pulse duration between 1705 and 1775 nm. (b) The pulse train corresponding to the fundamental repetition rate of 29.2 MHz. (c) The harmonic mode-locked operation showing 14th harmonic (d) The corresponding RF spectrum. (Inset): The RF-spectrum with 2.0 GHz bandwidth.

Metrics